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I. INTRODUCTION

We have seen tremendous growth in cloud technologies over
the past decade. The limited compute and storage available on
end user devices have led to the development of established
cloud offerings such as Microsoft Azure, Amazon Web Ser-
vices, and Google Cloud. All of these public cloud offerings
provide a platform for cloud computing. Public cloud providers
leverage their established infrastructure and proprietary tech-
nological knowledge to abstract away the difficult distributed
systems problems, enabling end users to take advantage of
cloud storage and compute solutions with minimal need for
each cloud application to reinvent complex algorithms.

Although the cloud has led to the development of many new
services, the limitations of the cloud have become increasingly
apparent as we have tried to develop new applications. Specif-
ically, bandwidth and latency issues are particularly difficult
to overcome in the world of mobile-cloud communication. In
addition, one can argue that the cloud leads to the issue of a
single point of failure. That is, because of the limited number
of super-scale data centers, a failure in one can lead to a service
outage in an entire geographic region. These limitations have
fueled a recent re-focusing on edge computing technologies.
Research has shown that cloudlets [1] can aid in real-time
video denaturing [2], cognitive assistance applications [3], and
VR/AR [4]. Although there are many benefits to a distributed
cloudlet infrastructure, there is currently no compelling plat-
form for edge computing for managing cloudlets and easily
deploying services. For edge computing to reach its full po-
tential, it is imperative that full service platforms be developed
for the edge world just as they were developed for the cloud
computing era.

II. A MICROSERVICES BASED EDGE COMPUTING
PLATFORM

I propose a geo-distributed microservices based edge com-
puting platform as the ideal mechanism to manage distributed
cloudlet infrastructures. Figure 1 shows several regions in a
potential cloudlet platform deployment. Note that a production
grade platform will have thousands of regions. Figure 2
illustrates what a cloudlet region may look like in Durham,
NC where each colored dot represents a microservice instance.
A production platform will have many more (potentially
hundreds) cloudlets and run more microservice instances on
each cloudlet. It is important to point out that cloudlets could
be a dedicated server room, a wireless base station, a self-
driving car with an onboard server, and much more.
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Fig. 1. Potential cloudlet regions. A production grade platform will have
thousands of such regions around the world.

In this proposed edge computing platform, the developer
would simply have to write and deploy microservices and
the system would handle load balancing, replication, failover,
system updates, health monitoring, and security and privacy.
Using a microservices approach is beneficial because it in-
herently breaks an application into independent components.
For example, a game may have a User microservice which
keeps track of a user’s information (e.g. username, email
address) and achievements (e.g. score, level progress). Such
a game may also have a Graphics Compute microservice
which renders the game level. In such a scenario, the User
microservice may run in the cloud because it is not bound
by tight latency requirements whereas the Graphics Compute
microservice may run on the edge (i.e. distributed cloudlet
platform) because it is sensitive to latency constraints. Fur-
thermore, the system would detect and predict the load (e.g.
users near X, Y, and Z cloudlets in regions A and B use
the game frequently) and intelligently place replicas of the
Graphics Compute microservice on the appropriate cloudlets.

Building a geo-distributed microservices based edge com-
puting platform presents many challenges: detecting cloudlet
failure, managing failover, intelligent placement of microser-
vice instances (load balancing), replication, providing a mech-
anism for end users to quickly find the closest instance of a
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Fig. 2. A possible cluster of cloudlets in a cloudlet region (in this case
Durham, NC). Each colored dot represents a microservice instance.

microservice (discovery), health monitoring, system updates,
and security and privacy. Furthermore, such a platform would
have to be able to support both stateful and stateless microser-
vices. While stateless microservices are simple to implement
(e.g. a Graphics Compute microservice simply receives a
compute request, processes it, and returns the result), there
are many challenges to implementing stateful microservices
on the edge. Some questions which arise when considering a
state management platform for the distributed cloudlet edge
are:

o Is state replicated within the cloudlet, between cloudlets,
or both?

« How do we ensure strong consistency on the edge?

o Would state transfer between cloudlets and the cloud? If
so, how?

o What state is maintained on the edge and what state is
maintained in the cloud?

I present cloudlet caches in the next section as a potential
solution for managing state for stateful microservices in an
ideal edge computing platform.

III. CLOUDLET CACHES

The benefits of edge largely amount to reducing latency.
This raises the question of whether we can reduce read/write
latency for clients when communicating with the cloud. Cur-
rently, whenever a client makes a read or write request, they
must communicate with servers which are potentially very
far away, resulting in long response times. Caching reads
and write on geographically closer cloudlets could potentially
alleviate this problem. Although there are currently systems
such as CDNs which cache static data, caching dynamic data
is a much more challenging problem because we must ensure
data consistency. I call cloudlets which cache dynamic data

(i.e. both reads and writes) cloudlet caches and argue that such
cloudlet caches are the ideal state management solution for an
edge computing platform with stateful microservices.

There are two insights which support the notion of cloudlet
caches:

« Eventual consistency is sufficient for many workloads.
 Strict ordering does not need to be enforced for many
workloads.

Consider, for example, a social network. When someone
makes a new post, everyone in the world does not need to see
it instantaneously (i.e. within milliseconds). It is acceptable
as long as everyone sees the new post within a few seconds.
When a comment is posted, it is not important to know that
comment A was posted 5 milliseconds before commend B.
Instead, it is sufficient if the system can deduce, perhaps
through timestamps, that comment A was posted a second
before comment B. Of course, not all systems behave in this
way. An airline booking system must have a strict ordering
of purchases, and its system must display the most up-to-date
seat availability. Otherwise, an airline may have some angry
customers calling their call centers because a customer was not
able to purchase a seat which appeared empty on their website.
Nonetheless, I believe cloudlet caches could be useful for real-
world applications because there are many systems which can
operate without the guarantees of strong consistency and strict
ordering.

Cloudlet caches would provide state management for a
microservices based edge computing platform by exposing
APIs that microservice developers can use to make calls to
persisted, replicated, and cached storage. That is, irrespective
of where the microservice is running (i.e. on a cloudlet or
in the cloud), the platform would guarantee the fault tolerance
and eventual consistency of any storage read/write commands.
This is similar to the approach Service Fabric takes by provid-
ing Reliable Collections [5]. The next section describes several
approaches to how one may implement state management for
cloudlet caches.

Figure 3 illustrates the vertical layout of a two-level cloudlet
cache architecture. All state is eventually consistent, with the
cloud acting as the arbiter of consistency (i.e. the cloud runs
some sort of consensus protocol). Each hexagon represents
state for a given microservice. In this scenario, the Lo caches
would run the logic for microservices and each microservice
would interface with the cloudlet cache state management
system through APIs. The cloudlet cache edge computing
platform would ensure writes are propagated to the cloud.
The cloud keeps a store of which cloudlets are caching data
and selectively broadcast updates to reduce polling overhead.
Furthermore, each cloudlet is fault tolerant (i.e. cloudlets
consist of clusters of servers) so a client which writes to a
cloudlet does not have to wait for the data to be committed
to the cloud (i.e. writes to cloudlets are successful once it’s
committed within the cloudlet cluster).
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Fig. 3. The vertical layout of a two-level cloudlet cache architecture. All state is eventually stored in the cloud, and cloudlets at each layer cache state for

the lower layers. Each hexagon represents state for a certain microservice.

IV. MANAGING STATE ON CLOUDLET CACHES

Various consensus protocols have traditionally been used to
achieve consistency. Consensus protocols take advantage of the
fact that given a deterministic state machine, we can achieve
consensus if we can ensure that state transitions are performed
on each replica in the same order [6]. Several algorithms have
been proposed to solve this problem.

The popular Raft [7] consensus protocol is an easy to
understand and implement version of the Paxos [6] consensus
protocol. Like many implementations of Paxos, Raft is a
Multi-Paxos system which means there is a single leader
that clients must communicate with. Having a single leader
greatly simplifies the algorithm. However, things do not have
to be this way. Based on the Single-Decree Paxos model, it is
possible to construct a system which achieves consensus even
though writes and reads can happen at any replica. Such a
system has several benefits such as being able to load balance
among replicas and achieving greater availability. EPaxos [8]
is a Paxos variant which allows for such a scenario. Whether
a client can communicate with a single leader or multiple
replicas can greatly affect scalability.

Two goals must be achieved to build a cloudlet based
dynamic caching system. One is that the cloudlet itself must be
highly available. The other is that data on each cloudlet and the
cloud must be eventually consistent. This paper investigates
the performance tradeoffs between using Raft and EPaxos to
ensure consistency across cloudlets and the cloud.

Figure 4 presents the traditional single-leader multiple-client
approach where the cloud maintains consistency using Raft
(architecture 1). Figure 5 shows a slightly different multiple-
“leaders” multiple clients approach where the cloud maintains
consistency using EPaxos (architecture 2). In both of these
cases no cloudlets are being used to cache data. Figure 6
presents the cloudlet caching model were clients connect to
cloudlets instead of the cloud (architecture 3). In this case,
the cloud implements Raft so all cloudlets must communicate
with the same leader. Figure 7 illustrates the cloudlet caching
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Fig. 4. Architecture 1: Scenario where there is no cloudlet caching and the
cloud achieves consensus using Raft. Client must communicate with single
leader.

model as well but cloudlets can communicate with any cloud
replica (architecture 4).

Note that although a cloudlet cache architecture could
have multiple layers, as shows in figure 3, this paper only
considers one layer cloudlet cache architectures for evaluation
purposes. Furthermore, the main reason Raft and Paxos are
being considered as potential consensus algorithms for this
paper is to evaluate whether the cloud having only a single
leader presents a more significant bottleneck than a cloud
which has multiple-“leaders” which clients can communicate
with. Although the cloud would ultimately be a bottleneck in
any cloudlet cache deployment, the negative effect of a central
cloud on system throughput may be lessened by leveraging
various consensus protocols.

V. EVALUATION METHODOLOGY

I implemented the four architectures presented in the pre-
vious section to evaluate how each of them impact system
throughput. The core algorithms of both Raft [7] and EPaxos
[8] were used to implement a consistent key-value store in
C#. Certain optimizations such as snapshotting and features
required in production environments such as cluster reconfig-
urations were not implemented. The key value store supported
GET, SET, and DELETE operations.
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Fig. 5. Architecture 2: Scenario where there is no cloudlet caching and the
cloud achieves consensus using EPaxos. Client can communicate with any
replica.
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Fig. 6. Architecture 3: Scenario where there is cloudlet caching and the cloud
achieves consensus using Raft. Clients can communicate with any cloudlet.
Each cloudlet must communicate with single leader.
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Fig. 7. Architecture 4: Scenario where there is cloudlet caching and the cloud
achieves consensus using EPaxos. Clients can communicate with any cloudlet.
Each cloudlet can communicate with any replica.

Each cloud cluster, both Raft and EPaxos, consisted of three
nodes. Clients were implemented as a wrapper around a cache
which essentially forwarded requests to the cloud if data was
not available in the local cache and returned data to the client
if the data was in the local cache (clients did not implement
clusters for evaluation purposes).

All evaluations were conducted with two clients. Two
cloudlet caches were used to evaluate architectures three and
four. In the case where Raft was used for the cloud cluster
all clients and cloudlets communicated with the single leader
(architectures one and three). In the case were EPaxos is
used for the cloud cluster, each client and cloudlet cache
communicated with a distinct node (architectures two and
four). Each client communicated with a distinct cloudlet cache
for both cases.

Throughput was measured as the number of requests a client

completed per second. Clients made consecutive requests (i.e.
a client sent a new request as soon as a previous one finished).
A client request consisted of a key, value, and request type.
The key for a given request was randomly chosen among 26
uppercase characters. The value of a request was a random
four-character string consisting of uppercase characters. The
type of operation for a given request was also randomly
chosen. Requests were made for a duration of 5 minutes and
throughput recorded every second.
The following latencies were simulated:

o Communication between client and cloud: 70 ms.

o Communication between client and cloudlet: 30 ms.

o Communication between cloudlet and cloud: 50 ms.

o Communication between nodes in a cloud cluster: Sms.

Evaluations were conducted on a 2017 MacBook Pro and
using two Raspberry Pies. For each architecture, evaluations
were conducted solely on the MacBook Pro (scenario A) and
using a MacBook Pro and one or two Raspberry Pies (scenario
B). In scenario A, the clients, cloudlet caches, and cloud ran
as separates threads in a single process. In scenario B, the
clients ran on the 2017 MacBook Pro, and the cloudlet caches
and cloud each ran on a separate Raspberry Pie.

VI. RESULTS

Throughput (requests completed per second) was plotted as
a function of time for each of the evaluations. These plots
one for each of the eight evaluations, two per architecture are
presented in figures 8, 9, 10, 11, 12, 13, 14, and 15. Table I
summarizes the mean throughput and variance for each of the
eight evaluation based on an aggregate of client 0 and client
1 data.

Throughput was greater when running the clients, cloudlet
caches, and cloud all on the MacBook Pro. Using Raspberry
Pies for the cloudlet caches and cloud reduced throughput
as expected since Raspberry Pies are much more resource
constrained than a MacBook Pro and communicating over
the network adds more variance in communication latency.
In addition, using cloudlet caches increased throughput for
both Raft and Paxos as expected since communication latency
between the client and cloudlet cache is lower than communi-
cating with the cloud once data is in the cache (it takes longer
for clients to retrieve data if the data is not cached since the
client has to send a request to the cloudlet then the cloudlet
has to send a request to the cloud).

The first thing to note is that the variance in throughput
was low on all evaluations but when running cloudlet caches
and the cloud on Raspberry Pies (figures 13 and 15). This
can be explained by performance limitations of the Raspberry
Pies since such large variances were not observed when only
using the MacBook Pro to run both the cloudlet caches and
cloud. The Raspberry Pies are probably unable to handle the
volume of requests as throughput increases (i.e. as number of
requests the Raspberry Pi has to handle increases). In addition,
there may have been some network issues which lead to higher
variance in these cases.
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Fig. 8. Architecture 1 (Raft cloud which clients communicate directly with)
evaluated on a MacBook Pro. ;1 = 13.56 and o = 0.50 (calculated based on
aggregate of client 0 and client 1 throughput).
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Fig. 9. Architecture 1 (Raft cloud which clients communicate directly with)
evaluated on a MacBook Pro (clients) and Raspberry Pi (cloud). p = 12.42
and ¢ = 1.59 (calculated based on aggregate of client 0 and client 1
throughput).

Another interesting thing to note is that performance on
the Raspberry Pies seemed to decrease over time (figures 9
and 11). This too can probably be explained by the resource
limitations of the Raspberry Pies.

Overall, the results indicate that cloudlet caches increase
system throughput. However, there was not a significant per-
formance difference between using Raft or EPaxos as the
consensus algorithm.

VII. DISCUSSION

Although the results from the previous section indicate
that cloudlet caches have the potential to increase system
throughput, it is surprising that using EPaxos did not increase
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Fig. 10. Architecture 2 (EPaxos cloud which clients communicate directly
with) evaluated on a MacBook Pro. p = 12.27 and o = 0.49 (calculated
based on aggregate of client O and client 1 throughput).
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Fig. 11. Architecture 2 (EPaxos cloud which clients communicate directly
with) evaluated on a MacBook Pro (clients) and Raspberry Pi (cloud). u =
9.33 and o = 2.44 (calculated based on aggregate of client 0 and client 1
throughput).

throughput compared to using Raft as the consensus protocol.
One would imagine that using a more distributed consensus
protocol such as EPaxos would help balance requests (i.e.
help reduce the cloud bottleneck) and increase overall system
performance.

Using EPaxos may not have increased throughput since its
strengths are based largely on its ability to balance load on a
wide area network. In wide area networks, clients in the United
States may be able to access a data center in Virginia much
faster than a client in Japan can since in a traditional consensus
protocol (e.g. Raft), the cluster of machines are all located
in the Virginia data center. However, EPaxos enables clusters
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o = 15.26 (calculated based on aggregate of client 0 and client 1 throughput).

with good performance even if the machines are spread out

communicate with) evaluated on a MacBook Pro (clients), a Raspberry Pi
(cloudlet caches), and another Raspberry Pi (cloud). 4 = 17.95 and 0 =
19.80 (calculated based on aggregate of client O and client 1 throughput).

between the United States and Japan, hence reducing access

latencies for users in Japan. The advantages of EPaxos were



probably not observed since the evaluation for this paper
assumes that cloud clusters could communicate quickly over
a local network (i.e. only 5ms delays between nodes). Fur-
thermore, this result implies that the potential load balancing
characteristic of EPaxos compared to Raft is negligible when
communication between nodes is fast. Moreover, consensus
algorithms do not need to operate on a wide area network when
cloudlet caches are used since cloudlet caches help reduce
access latencies for users.

VIII. RELATED WORK
A. State Management

Managing state within a distributed cluster of machines is
largely a solved problem. Raft [7], a simplified version of
the (infamous) Paxos [6] algorithm, achieves leader election
and consensus through a distributed election mechanism and
log replication. ZooKeeper [9] was developed to abstract away
many of the difficult distributed systems problems which arise
in distributed high-performance compute scenarios. EPaxos [§]
was developed as a leaderless consensus protocol for wide area
networks. However, none of these systems were developed for
the edge scenario and the programming models they motivate
do not directly translate from compute clusters in the cloud to
the distributed edge world.

The federation and replication components of Service Fabric
[5] solve common distributed computing problems such as
leader election and state replication. While its core algorithms
were developed to support edge scenarios [10], Service Fabric
has matured into a system for managing state in the cloud.

B. Microservices Platform

Service Fabric is the most comprehensive microservices
management platform on the market. It supports full lifecycle
management of applications composed of both stateless and
stateful microservices [S]. However, the specific microservices
programming model Service Fabric has adopted over time
is not meant for edge computing. Nonetheless, its core al-
gorithms are agnostic to higher levels of state management
abstraction, making it a good candidate for developing state
management on the edge.

Kubernetes [11] are a popular container orchestration sys-
tem. Although Kubernetes embraces the idea of containerized
microservices, it is not a full fledge microservices management
platform like Service Fabric. Instead, Kubernetes is purely
a container orchestration system and other tools have to be
deployed on top of it to provide state management and other
useful features which a microservices platform should have
built into it. Even though some have argued that Kubernetes
should be used as a base for managing containers on the edge
[12]. I believe this is the wrong approach since one would want
a microservices based edge computing platform to provide
more than just container orchestration on the edge.

C. Edge Computing Platforms

OpenStack++ [13] was developed to enable faster testing
of edge computing applications by extending the OpenStack

[14] platform to support rapid provisioning of VM images, VM
migration across cloudlets, and cloudlet discovery by mobile
clients. However, OpenStack++ does not aim to build a true
platform for edge computing which abstracts issues such as
replication, state management, health monitoring, and much
more.

Akamai Technologies has a Cloudlet Applications [15]
offering, but the applications are pre-made edge scenarios
which customers can easily plug into and they do not support
the execution and management of truly custom applications.

D. IoT Platforms

There are several IoT management and deployment plat-
forms such as AWS Greengrass [16], Azure IoT Edge [17],
and EdgeX [18]. However, these IoT platforms do not aim to
provide a platform for edge computing in the cloudlet space.
Instead, they focus on deploying services on IoT devices, and
managing communication between IoT devices and the cloud.

E. State Management on the Edge

CloudPath [19] is an idea which is similar to cloudlet
caches. The authors propose the use of multiple levels of
caches which edge devices can communicate with. However,
the authors try to guarantee strict ordering through timestamps
which cannot be done with total confidence due to clock
skews. In addition, CloudPath suggests using polling to ensure
data freshness which is an unnecessary overhead. Cloudlet
caches avoid these issues by not guaranteeing strict ordering
and broadcasting updates.

IX. FUTURE WORK

Future work relating to cloudlet caches should investigate
how much of a bottleneck the cloud may be and whether
adding more cloudlet cache layers improves or hinders per-
formance. In addition, evaluations should be conducted using
real-world traces over longer periods of time.

There is much work to be done relating to a microservices
based edge computing platforms. Although cloudlet caches
present a potential solution for managing state on the edge,
there may be better approaches which increase throughput
or provide stronger consistency guarantees without degrading
performance. Moreover, complicated problems such as load
balancing, replication, discovery, health monitoring, system
updates, and security and privacy would have to be addressed
for an edge computing platform to be production ready.

X. CONCLUSION

We are desperately in need of an edge computing platform
with a mature ecosystem for developers similar to the cloud
computing platforms we see in production environments today.
Taking advantage of containerized microservices is the best
solution to an edge computing platform and current technolo-
gies for microservice and container management as well as
consensus could potentially be used to manage such a platform
and provide an abstracted state management system for stateful
microservices.



I introduced cloudlet caches as one potential solution for
managing state on the cloudlet edge. Evaluations of the four
architectures presented above showed that cloudlet caches have
the potential to increase overall system throughput for an
edge computing platform. However, somewhat surprisingly,
Raft, the more traditional Multi-Paxos consensus algorithm,
performed similarly to the more distributed leaderless EPaxos
consensus algorithm indicating that there may not be a need
for novel consensus protocols to avoid the cloud bottleneck in
a cloudlet cache deployment.
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