Oxford High School

A Music Identification Algorithm which Utilizes the Fourier
Analysis of Audio Signals

Joseph Edmond DeChicchis
March 25, 2016

Candidate Number: 006832-0004

Table of Contents

INtrOdUCTION. . ..o e e 2
The Fourier Transform..... ..o e, 2
Analyzing AUdio S1@Nals.........ooiiiiiii e 3
SEQUENCING IMUSIC. ...ttt tiiet ettt ettt et et et e et et et e et et e e et et e et e et e e e eaeeeenaeaneens 8
Hashing the Sequenced MUSIC.ttt e 9
0153 4187 08 F eV L0 10
Testing Music Identification.c.oiuiiiitii e e 13
07071761 10 1S3 10 o FO 13
Bibliography e 14

Introduction

The goal of this investigation is to create a small scale system for identifying music through the
mathematical analysis of audio signals. Currently there are several smartphone applications
which identity music such as Shazam, SoundHound, and Musixmatch. The process Shazam uses
to identify a song is outlined in a paper by one of the founders of Shazam Entertainment, Ltd.'
Although this paper was instrumental in setting the path for this investigation, there was not
much detail as to how Shazam implemented a robust music identification system because
Shazam’s technology is proprietary. Thus, the music identification algorithm had to be designed
from scratch.

In particular, the music identification algorithm consists of the following parts:
1. Analyzing audio signals using the Fourier Transform.
2. “Sequencing” music by identifying key frequencies.
3. Calculating a unique Hash-Time vector for each song.
4. Assembling these Hash-Time vector files into a database.
5. Running steps 1 through 3 on a sample audio signal.
6. Matching the sample audio Hash-Time vector to the correct song from the database.

Throughout this investigation “audio signal” will refer to any audio data, whether it be a music
file or live recording from a microphone.

The Fourier Transform

The Fourier Transform is a method of converting a function in the time domain into a function in
the frequency domain. This is commonly written as

Fe) = [" pe v

where F(v) is a function in the frequency domain, f{(¢) is a function in the time domain, v is
frequency and ¢ is time.? On the other hand, the Inverse Fourier Transform is a method of
converting a function in the frequency domain into a function in the time domain. This is
commonly written as

flit) = /jo F(v)e*™™tdy 3

' Avery Li-Chun Wang, “An Industrial-Strength Audio Search Algorithm,”, accessed March 13, 2016,
http://www.ee.columbia.edu/~dpwe/papers/Wang03-shazam.pdf.

2 Adapted from “Fourier Transform,” Wolfram MathWorld, accessed March 13, 2016,
http://mathworld.wolfram.com/FourierTransform.html.

? Adapted from “Fourier Transform,” Wolfram MathWorld, accessed March 13, 2016,
http://mathworld.wolfram.com/FourierTransform.html.

2

While the continuous transforms above work perfectly when dealing with a continuous function,
the Discrete Fourier Transform and Inverse Discrete Fourier Transforms are used when dealing

with discrete functions. The Discrete Fourier Transform commonly written as
N—-1
Xv — Z xt€—27r1itv/N
k=0 ,

and the Discrete Inverse Fourier Transform is written as
N—-1

_ 1 2mit /N
xt_NT;)XUeﬂ'zv

where X, is a discrete function in the frequency domain, x, is a discrete function in the time

domain, v is frequency ¢ is time, and N is is the number of points in the transform.*

This investigation will use the Discrete Fourier Transform to analyze audio signals because
audio data is stored digitally with discrete values. (See next section.) By running the transform,
the magnitude of the frequencies of the audio signal can be analyzed at various time intervals. It
is important to note that using the Discrete Fourier Transform results in a symmetry around 0.5 f;
known as the Nyquist which add redundant information.” (See next section.)

Analyzing Audio Signals

Before audio signals can be analyzed, it is important to understand how audio signals are
digitally stored. There are many file formats for encoding audio signals, but in essence, an audio
file consists of a sample rate measured in Hertz (data points per second) and a matrix of entries
whose rows are the amplitude of the audio wave at time ¢, measured from the beginning of the
song (#=0). The columns represent the left and right “channel,” or audio signal for the left and
right ear.® If an audio file has a sample rate of 44100 Hz, which is a common sample rate for

audio files, each row of the matrix of amplitudes would represent a

1
2100~ 0.00002267573

second interval. Thus, the first entry would be the amplitude at time =0 seconds, the second at
t=0.00002267573 seconds, the third at = 0.00004535147 seconds, and so on.

Spuar» O the next page, is an example audio signal represented as a matrix. The sample rate is
44100 Hz.

4 Adapted from “Discrete Fourier Transform,” Wolfram MathWorld, accessed March 13, 2016,
http://mathworld.wolfram.com/DiscreteFourierTransform.html.

5 “FFT Tutorial,” University of Rhode Island Department of Electrical and Computer Engineering - ELE 436:
Communication Systems, accessed March 21, 2016, http://www.phys.nsu.ru/cherk/fft.pdf.

6 These characteristics about audio files were deduced by analyzing various audio file formats using MATLAB.

_3-

SDual =

—0.0420532226562500
—0.0574951171875000
—0.136291503906250
—0.107666015625000

0.0169982910156250
—0.0713195800781250
—0.146820068359375
—0.0498962402343750

In order to simplify the analysis process, the two channel signal can be converted to a single
channel signal, or mono signal, by treating the first and second column of the S),,, matrix as
two separate vectors, adding the two vectors, then averaging the value by dividing it by two.

Therefore,
[—0.0420532226562500 |
—0.0574951171875000
Sup = 1| | ~0.136201503906250
2 | | —0.107666015625000

0.0169982910156250
—0.0713195800781250
—0.146820068359375
—0.0498962402343750

—0.0125274658203125
—0.0644073486328125
—0.141555786132813
—0.0787811279296875

Graph 1 is a plot of S, , where the horizontal axis is the time axis, and the vertical the

amplitude.

Amplitude

Graph 1: Plot of audio signal.

2 2.5 3 3.5

Time

Although audio files store the time and amplitude data of audio signals, the magnitude of various
frequencies of the audio signal are not stored. A Fourier Analysis must be performed to extract
this frequency-magnitude data. Because the audio signal data is discrete, the Fast Fourier
Transform (FFT) algorithm in MATLAB (on optimised implementation of the Discrete Fourier
Transform) was used to analyze audio signals.” The FFT function takes the form FFT(x,N)
where x is the signal and N the number of frequency points. It is important that N be at least as
large as the sample rate (44100 Hz for this investigation).?

Fis a vector with 44100 elements, which is the result of the FFT of S, .

—11.7084197998047 + 0.00000000000000;
—11.6080348127239 — 0.964594419737194i
F = FFT(Shone, 44100) — | —13:3451041284403 — 0.344030055338166
—9.96484769916224 — 2.46013776630596

Eachrow, n=1, 2, 3, 4, ..., 44100, contains the complex number f, , where 7 is the index. The
whole number 7 is the frequency, and the magnitude of f, is the magnitude of the frequency n.’

| fnl = \/Re(fn)2 + Im(fn)?
is the magnitude of that frequency n, where Re(f,) is the real part of f,, and Im(f,) is the

imaginary part of f,. For example, the magnitude of the first row, which is the magnitude of
1 Hzis

\/(—11.708419799804688)2 + (0.000000000000000)2
= 11.708419799804688 .
Mis a vector whose elements are the magnitudes of the frequencies. The index n is the
frequency.

11.7084197998047
11.6480433811005
M = |13.3495378525958
10.2640375825843

The values of M have no unit. However, they can be easily converted to the decibel scale using

the formula
MDecibel = 20 loglO(M) .10

7 “Matlab,” MathWorks, accessed March 13, 2016, http://www.mathworks.com/help/matlab/.

8 “FFT Tutorial,” University of Rhode Island Department of Electrical and Computer Engineering - ELE 436:
Communication Systems, accessed March 21, 2016, http://www.phys.nsu.ru/cherk/fft.pdf.

° Brian Douglas, “Introduction to the Fourier Transform (Part 1 and 2)” (video), Jan 10, 2013, accessed March 13,
2016, https://www.youtube.com/watch?v=1JnayXHhjlg, https://www.youtube.com/watch?v=kKu6JDqNmaS§.

10 “Matlab,” MathWorks, accessed March 13, 2016, http://www.mathworks.com/help/matlab/.

_5—

0.8

T
0.7 A\ i
\\\ Ifl-
‘I"\II I
06 | il
05 | / =l
[\ ‘
= |
= \
c 0.4 \
o ‘.
m II
= \
0.3 \ [
0.2 \ o 5, /
I'\II ’// \\. / \\
I‘. ,";I \ -y e .l"\
0 - 1 "I :‘" = ’ .///
\ N P
I".I \\\ //,/ \ |
I‘-. | N o ".u."
0 i ! \ I \ I \ I
0 0.5 1 1.5 2 25 3 3.5 4 4.5
Frequency «10%

Graph 2: Plot of frequencies and magnitudes of an audio signal.

Graph 2 is a plot of M of an audio signal where the horizontal axis is frequency (rows of the

vector), and the vertical axis the magnitude (elements of the vector). From Graph 2, it is clear
that the FFT contains a symmetric duplicate of information.'' In this case, the line of symmetry is

at 22050 Hz. Thus, when analyzing the FFT of an audio signal, half of the data can be discarded.
It is also important to notice at this point that all time data is lost when a FFT is performed on an
audio signal. In order to preserve the time information so that the magnitude of the various
frequencies at certain time intervals can be analyzed, the FFT must be run on certain ranges of
the audio signal, and reconstructed into a matrix where the rows are ranges of time, the columns
are frequencies, and elements magnitude at a specific time and frequency. X, on the next page, is

such a matrix with 44100 columns and 12 rows. Because the FFT was performed every 44100
samples, each row represents 1 second (44100/44100 =1).

"' “FFT Tutorial,” University of Rhode Island Department of Electrical and Computer Engineering - ELE 436:
Communication Systems, accessed March 21, 2016, http://www.phys.nsu.ru/cherk/fft.pdf.

—6—

11.708419799804688 11.648043381100502 ... 91.286142264102340

0.875854492187500 1.638081122706419 ... 18.599284062584506

4.970230102539063 5.103761808444784 ... 14.331400670795963

Magnitude

2500

2000

1500

1000

500

1000

400

0 Frequency

Graph 3: Plot of audio signal in 3 dimensions.

100 200 300 400 500 600 700 800 900 1000

Frequency

Image 1: Audio signal represented as an image.

Graph 3 is a 3 dimensional representation of X. Alternatively, X can be represented as an
image, such as in Image I. Graph 3 and Image | are often referred to as a spectrogram. The
music identification algorithm is centered around effectively analyzing such spectrograms.'?

Sequencing Music

During the sequencing process, a spectrogram is created by running the FFT on 2205 chunks,
and reconstructing a matrix from the results of theses transforms. This results in a matrix similar
to X except that each row represents 2205/44100 = 0.05 second intervals. (All of the audio files
were stored in the .m4a format, and had sample rates of 44100 Hz.) The resultant matrix was
saved for each song sequenced. Code I is a MATLAB program which performs these
calculations. The green text are comments and do not affect the program. Xj,,, is an example

output of the program. Note that only 1103 columns are saved because the FFT is symmetric
around 1102.5 Hz.

for currentSong=1:657 #Cycle through the audio files
fileName = ['Song',num2str{currentSong),'.mia'] oad the audio
[sig,Fs] = audioread(fileName); %Extract the audio signal and sample rate
monoSig = (sig(:,1)+sig(:,2))/2; tConvert the signal to a mono signa
interval = 2285; t5et the interval to run the FF
extraSpace = mod(length{monoSig),interval); Make sure monoSig is
monoSig = [monoSig;zeros(interval-extraSpace,1)]; %divisible by interval
currentPos = 1;
allpe = []; Matrix) store the sult of i
for index=1:length{monoSig)/interval #%Cycle through the audio signa
tempSig = monoSig{currentPos: currentP05+1nterval 1);
¥ = fft(tempsSig,interval); Run the FI
mag¥ = abs(Y); nd the nitudes of the F result
mag¥ = mag¥(1l:ceil(interval/2)); =HExtract the first half of the data
allDB = [allDB;reshape(magy,[1, length{magV}]}] tAdd mag¥ to allDB
currentPos = currentPos + interval;

end
saveFileName = ['SequencedSong',num2str{currentSong),'.txt']
dimwrite(saveFileName,allDB); Save allDB as a plain text file

end

Code 1: Program to sequence audio file and save the resultant matrix.

2. “How Shazam Works,” Free Won't, January 10, 2009, accessed March 13, 2016,
https://laplacian.wordpress.com/2009/01/10/how-shazam-works/.

_8—

0 0 0

0.0003204 0.00032158 ... 1.565e — 05
Xaong = 0.0076599 0.0025392 ... 0.00012706
0 0 e 0

Hashing the Sequenced Music

Once an audio signal is sequenced, the frequency with the maximum magnitude for the
frequency ranges 40 <f<80, 80<f<120, 120<f<160, and 160 <f<200 are identified."
These frequencies are the “key points” of the audio signal. The ranges were chosen because a lot
of “activity” occurs in this range, as illustrated in Graph 3 and Image 1. (Several other ranges up
to 1000 Hz were tested but the aforementioned ranges worked best.) The four frequencies are
subsequently stored in a matrix with four columns. K is an example of this matrix.

1 41 81 121
4 41 119 121
5 42 81 151
26 51 81 131

Once the key frequencies are identified, the four frequency pairs are converted to a vector using
a hashing algorithm. The hashing algorithm creates a unique number from 4 other numbers. The
hashing algorithm follows the following recursive process:'*

Start with Hash = 4 (any number other than 0 will work)
For each frequency:

Hash = 17 * Hash * frequency (any prime number will work)
Add the Hash to a vector of hash values

Thus, the original audio signal is reduced to a vector of hash values with rows which represent
0.05 second intervals (a Hash-Time vector). Code 2, on next page, is a MATLAB program which
performs these calculations. The green text are comments and do not affect the program. H is an
example output of the program.

352344
367729
77— |372315
478069

3 Adapted from Roy van Rijn, “Creating Shazam in Java,” June 1, 2010, accessed March 13, 2016,
http://royvanrijn.com/blog/2010/06/creating-shazam-in-java/.

4 “C# hashcode for array of ints,” Stack Overflow, August 4, 2010, accessed March 13, 2016,
http://stackoverflow.com/questions/3404715/c-sharp-hashcode-for-array-of-ints.

—9_

for currentSong=1:657 Cycle through the sequence files of all songs

fileName = ['FregquencySong',num2str{currentSong},'.txt']%load the sequence
allDB = dlmread(fileName); matrix

plotDBE = allDB(l:end,48:2088); Use only columns 48 to 268 for analysis
keyPoints = []; Matrix to store the result of the key points
for index=1:size(plotDE,1) Cycle through each row of the sequence matri

currentSubPos = 1;
for subIndex=1:4 Cycle through the 48 Hz ranges:

[dentify and store the key polnt for a frequency range
[v,i] = max{plotDB{index,currentSubPos:currentSubPos+39));
keyPoints(index,subIndex) = i+48*({subIndex-1);
currentSubPos = currentSubPos + 48;

end
end
hashTable = []; %Matrix to store the hash values
for index=1:size(keyPoints,1) .Cycle through through key point
hash = &; %Initial value of the hash (cannot be zero)
for subIndex=1:4 Cycle through the key points
Calculate the hasl
hash = 17*hash+keyPoints(index,subIndex);
end
hashTable{index,1) = hash; Store the hash
end
Save the hash matrix as a plain text fTile
saveFileName = ['DataSong’' ,num2str(currentSong), ' .txt']
dlmwrite(saveFileName,hashTable);
end
Code 2: Program to hash audio file sequence and save the resultant vector.
Identifying Music

Once a database of Hash-Time vectors for a number of music audio files is compiled, a song can
be identified by converting a sample audio signal into a Hash-Time vector and searching the

database for a match.

The following are the steps of the music identification process:
1. Record a 1 to 10 second sample of the audio signal through a microphone.
2. Create a sample Hash-Time vector for the audio signal (H g)-

3 Cycle through the music Hash-Time vectors (H ;.)-
4. Divide Hg,,y. and H ;. by 1000 and round the elements to a whole number.

5. Cycle through the elements of H,,,, -
6. Find the indices of each H,,

these indices in vector M

usic

Temp *

—10-

which matches with the element of the H,,,,, - Store

7. Subtract the index of element of the Hy,,,,, being matched from M,,,,."”

8. Add the elements of My,,,, (normalized time values) to vector M 4.

9. Repeat steps 3 through 8.

10. Find the mode of M 4.

11. Find the number of elements n
12. Find the ratio

mode 11 M 4; with the mode value.

_ N'mode
number of elements in M4y .

13. Add r to a vector R .

13. Repeat steps 3 through 13.

14. Find the index of R,; with the maximum value. This is the ID number of the song
which is the closest match to the sample audio signal.

Hyppie and H g are divided by 1000 and the elements are rounded to a whole number in step

3 to compensate for small errors in frequency readings. Testing showed that 1000, which reduces
the elements to three significant digits, results in more viable matches and increases the viability
of the algorithm.

Matched Hash Values: 126 760 873 964
Music Time: 100 110 120 130
Sample Time: 0 10 20 30
Normalized Time: 100 100 100 100

(Music Time - Normalized Time)

Diagram 1: Calculating the normalized time value.

In addition, the index of element of the Hg,,,,, being matched is subtracted from M in step

Temp
7 in order to extract the normalized time value. This normalized time value represents the time at
which the sample audio signal starts in the song. As Diagram I shows, if the sample audio signal
starts at +=100 in the song, the difference of the indices which matched to the sample
Hash-Time vector elements and the index of the sample Hash-Time vector elements equal 100.
(Note that the index is a time value.) It follows that the most common normalized time value is
the position at which the sample audio signal begins in the song (step 11). By taking the ratio of
the number of elements with the most common time-shift value and the number of overall
matches, the confidence of a match can be determined (7 in step 12). Thus, choosing the match
with the highest confidence value is the most likely match (step 14).

5 Adapted from Roy van Rijn, “Creating Shazam in Java,” June 1, 2010, accessed March 13, 2016,
http://royvanrijn.com/blog/2010/06/creating-shazam-in-java/.

—11 -

The left plot in Graph 4 illustrates a match with Song 87. (Each song was assigned a number
from 1 to 657.) There is a clear peak in confidence value at 87. On the other hand, the right plot
in Graph 4 illustrates an instance of no unique match being found. There are many peaks but no

single unique one.

0.3

0.25

0.2

Confidence Value
Confidence Value

"h

Wn

ﬁ“thhrw w

M g

300
Song ID

” "Wr lM

400

W. Al

L L
200 500 600 700

,J(” Il ” ﬂ” w I

’J’

J‘\l

i

wv»

\\\W .(“

I
i

v Wﬁ

L L L L
100 200 300 400 500 600 700

Song ID

Graph 4: Plots of the confidence values for a match and inconclusive match.

Code 3 is a MATLAB program which performs this matching process. The green text are
comments and do not affect the program. Once the sample audio signal is recorded, the matching

process is almost instantaneous.

able 1 t lash me wect
lormalize the Ha ime vector of ZI'

sampleﬂashTahle = samuleHashTable ! IHHB

ampleHash 18

sampleHashTable = round(sampleHashTable);
allRatios = []; ¥Vector to store all of th
for currentSong=1:657 Cycle through al
fileName = ['DataSDng',numzstr{currentSung
song = dimread(fileName);
ENormalize he Hash-Time vector of the
song = song / 1088;
song = ruund(sang],
matches = []; %¥Vector to store all of th

for index=1: length(sampleHashTable}

XTurn The natch imto normalized tTime
matches = [matches;find(song==sampleHa
end
m = mode(matches); Find the mode of the

- 4=

numberOfMode = sum(matches(:) == m);

ratio = numberOfMode/lengthi{sampleHashTabl
allRatios = [allRatios;ratio];
end
[v,1] = max{allﬁatlu5j, Find the maxim
v 15 the wvalue and i is the index of the maxi

of the

dUdlo 51

f the awdio 1 x Has Tim o1
},'.txt"]; Darc 2 Hash-Time
ctor
f
steb timas
Cycle through the sample audic
sh-Time vector and find ches
and add 1t to the matches wvector
shTable(index))-index];
matchnes
the number of mode values
EJ ind the ratio
store the ratic
1 ratirn
um ratiao

Code 3: Program to identify a sample audio signal.

Testing Music Identification

- 12—

A database of the Hash-Time vector of 657 songs were compiled to test the matching algorithm.
It took approximately 15 hours to prepare the database (1 minute and 24 seconds per song).

Overall, the matching algorithm worked very well. The samples were recorded from a
microphone in real time and matched against the database. In many cases, the algorithm correctly
identified a song with only a one second sample. At most, a ten second sample was sufficient to
correctly identify as song.

Conclusion

This investigation has shown that a robust music identification algorithm can be constructed by
analyzing audio signals using Fourier Analysis. As the testing illustrated, the algorithm presented
in this investigation is just as effective, if not more effective, as commercial music identification
systems such as Shazam. Shazam and other companies have had many years to optimize their
algorithms for faster and more accurate match results. In fact, when Shazam first launched, a ten
second audio sample was needed to identify songs. Surprisingly, the comparably simple
algorithm presented in this investigation can identify many songs with only a 1 second audio
sample. Moreover, while Shazam uses a much more complex system for calculating hash values
which takes into account time,'® the algorithm presented was effectively able to identify music
by using hash values which did not incorporate any time data. This simpler implementation was
made possible by the unique method of matching Hash-Time vectors.

Although the music identification algorithm presented is surprisingly robust, it does contain
some limitations. First and foremost, only 657 songs were included in the Hash-Time vector
database, and the algorithm’s effectiveness with a more realistic database of millions of songs is
yet to be tested. In addition, not all frequency ranges were fully tested to conclude on the best
way to choose key frequencies. Furthermore, there are other sample audio signal ranges which
the FFt can be use on which may be effective, and this path was not fully explored. (Only a few
sample ranges were tested.)

Overall, this investigation yielded a robust music identification algorithm which can be improved
upon to possibly elevate the speed and percentage of positive matches to a commercial level.

' Avery Li-Chun Wang, “An Industrial-Strength Audio Search Algorithm,”, accessed March 13, 2016,
http://www.ee.columbia.edu/~dpwe/papers/Wang03-shazam.pdf.

— 13—

Bibliography

Douglas, Brian. “Introduction to the Fourier Transform (Part 1)” (video). Jan 10, 2013. Accessed
March 13, 2016. https://www.youtube.com/watch?v=1JnayXHhjlg.

Douglas, Brian. “Introduction to the Fourier Transform (Part 2)” (video). Jan 19, 2013. Accessed
March 13, 2016. https://www.youtube.com/watch?v=kKu6JDqNmas.

Free Won't. “How Shazam Works.” January 10, 2009. Accessed March 13, 2016.
https://laplacian.wordpress.com/2009/01/10/how-shazam-works/.

MathWorks. “Matlab.” Accessed March 13, 2016. http://www.mathworks.com/help/matlab/.

Stack Overflow. “C# hashcode for array of ints.” August 4, 2010. Accessed March 13, 2016.
http://stackoverflow.com/questions/3404715/c-sharp-hashcode-for-array-of-ints.

University of Rhode Island Department of Electrical and Computer Engineering - ELE 436:
Communication Systems. “FFT Tutorial.” Accessed March 21, 2016.
http://www.phys.nsu.ru/cherk/fft.pdf.

van Rijn, Roy. “Creating Shazam in Java.” June 1, 2010. Accessed March 13, 2016.
http://royvanrijn.com/blog/2010/06/creating-shazam-in-java/.

Wang, Avery Li-Chun. “An Industrial-Strength Audio Search Algorithm.” Accessed March 13,
2016. http://www.ee.columbia.edu/~dpwe/papers/Wang03-shazam.pdf.

Wolfram MathWorld. “Discrete Fourier Transform.” Accessed March 13, 2016
.http://mathworld.wolfram.com/DiscreteFourier Transform.html.

Wolfram MathWorld. “Fourier Transform.” Accessed March 13, 2016.
http://mathworld.wolfram.com/FourierTransform.html.

— 14—

