
Semantic Understanding for Augmented Reality and Its
Applications
Thesis presented on April 8, 2020

JOSEPH DECHICCHIS, Duke University, Department of Computer Science

Abstract: Although augmented reality (AR) devices and developer toolkits are becoming increasingly ubiqui-
tous, current AR devices lack a semantic understanding of the user’s environment. Semantic understanding
in an AR context is critical to improving the AR experience because it aids in narrowing the gap between
the physical and virtual worlds, making AR more seamless as virtual content interacts naturally with the
physical environment. A granular understanding of the user’s environment has the potential to be applied
to a wide variety of problems, such as visual output security, improved mesh generation, and semantic map
building of the world. This project investigates semantic understanding for AR by building and deploying a
system which uses a semantic segmentation model and Magic Leap One to bring semantic understanding to a
physical AR device, and explores applications of semantic understanding such as visual output security using
reinforcement learning trained policies and the use of semantic context to improve mesh quality.

Committee members:
Maria Gorlatova (advisor)

Daniel J. Sorin
Carlo Tomasi

Thesis presented in partial fulfillment of the requirements for graduating with distinction in the Department
of Computer Science at Duke University

Spring 2020

Duke University, Computer Science, Spring 2020 Joseph DeChicchis

Contents

Abstract 1
Contents 2
1 Introduction 3
2 Semantic Understanding for Augmented Reality 4
2.1 Overview 4
2.2 Related Work 5
2.2.1 Image Classi�cation 5
2.2.2 2D Object Detection 5
2.2.3 3D Object Detection 5
2.2.4 2D Semantic Segmentation 5
2.2.5 3D Semantic Segmentation and Scene Understanding 6
2.2.6 SLAM 6
2.2.7 Edge Computing 6
2.3 System Architecture 7
2.4 Dataset 8
2.5 Model Architecture 10
2.6 Model Training 11
2.7 Deploying the System 11
2.7.1 Edge Server Setup 11
2.7.2 Custom Mount and Device Calibration 13
2.7.3 Overlaying Semantic Information in the User's Field of View 15
2.8 Model Evaluation 15
2.9 System Performance 18
2.10 Discussion 18
3 Adaptive Augmented Reality Visual Output Security using Reinforcement Learning 19
3.1 Overview 19
3.2 Related Work 20
3.2.1 Augmented Reality Output Security 20
3.2.2 Deep Reinforcement Learning 20
3.3 Reinforcement Learning Trained Visual Output Security Policy 20
3.4 Visual Output Security Policy Training 22
3.5 Visual Output Security Policy Training Results 23
3.6 Deploying the Visual Output Security Policy 24
3.7 Discussion 27
4 Semantically Aware Meshing 28
4.1 Overview of Semantically Aware Meshing 28
4.2 Related Work 29
4.3 Semantically Aware Meshing: A Proposal 29
5 Future Work 30
6 Conclusion 30
Acknowledgments 31
References 31

2

Semantic Understanding for AR and Its Applications Duke University, Computer Science, Spring 2020

1 INTRODUCTION

Augmented reality (AR) technology is becoming increasingly ubiquitous due to the proliferation of
mobile devices and developer toolkits such as ARKit [4] and ARCore [22] as well as the introduction
of head mounted AR devices such as the HoloLens [43] and the Magic Leap One [36] which
enable rich and immersive AR experiences. Furthermore, we can expect consumer head mounted
AR devices to enter the market as hardware improves, form factors become more portable and
comfortable, and unit costs decrease. It has been reported that Apple is working on consumer AR
glasses [71] and they are most de�nitely not the only consumer technology company working to
bring AR to the masses.

Even though AR applications are available to consumers, there is still much to be desired in
terms of a truly immersive and rich experience, even on dedicated AR devices such as the Magic
Leap One. Ideal hardware improvements for future generation devices include: a smaller and lighter
form factor, larger �eld of view, better color reproduction, and higher resolution displays. While
these hardware improvements will surely be welcome by users of AR devices, software needs to
improve as well. In particular, in order for AR applications to not only overlay content in front
of the user's �eld of view but also enable users tointeractwith digital content requires software
improvements in several areas, such as better simultaneous localization and mapping (SLAM),
semantic scene understanding, and multi-user AR. A seamless interaction between the physical
and virtual worlds, sometimes referred to as Mixed Reality [44], would allow for a much more
immersive AR experience.

Current AR devices already have a limited understanding of the user's environment. For example,
the Magic Leap One is able to create a mesh of the user's environment and localize the user within
this mesh. The device can also store meshes and share them with the cloud. However, meshes only
give AR applications a sense of where surfaces are, without any information on what that surface is
(e.g. table, wall, �oor etc.). Nonetheless, speci�c algorithms have been developed for mobile AR to,
for example, understand the detailed features of a user's face. Although such technology is used by
Snapchat [66] and Facebook Messenger [19] to overlay a user's face with various arti�cial masks, it
does not provide a more general understanding of the user's environment. While Apple introduced
People Occlusion to ARKit [4], it is still limited to only detecting occlusion for people in a scene
and cannot detect occlusion for any object.

If AR devices were able to have a fuller semantic understanding of the user's environment,
then the user's experience could be greatly improved. That is, in an ideal scenario, an AR device
would know where various objects are in a scene (e.g. chair, table, book etc.) and be able to draw
bounding boxes around them or even segment them in 3D space. Such a granular and fuller semantic
understanding of the environment has the potential to be applied to:

� Visual output security for AR devices [2, 17, 37, 38, 55]. Knowing what objects are in a scene
is important for e�ective visual output security and can also enhance the user experience in
general by, for example, not occluding other users' faces when wearing a head mounted AR
device.

� Better meshing. The meshes generated by current AR devices do not mesh surfaces very well
(e.g. the meshes for �at tables tend to have unevenness). However, if the meshing algorithm
knew that a certain region was a table, for example, it could smooth out the mesh. In this
manner, semantic information could inform meshing algorithms to improve their meshes.

� Building a detailed semantic spatial map of the world (i.e. a �reality map�) to improve the AR
experience by seamlessly mixing the physical and virtual worlds [14]. For example, a reality
map with accurate localization would allow an AR application to persist virtual objects in
physical space.

3

Duke University, Computer Science, Spring 2020 Joseph DeChicchis

The computer vision community, empowered by advances in deep learning thanks to bigger data
sets, better algorithms and powerful compute, have, in recent years, made tremendous progress
in image classi�cation [23, 27, 35, 57, 65, 70], semantic segmentation [6, 56, 78, 80, 81] and object
detection [20, 21, 41, 53, 54]. Consequently, the aim of this project is to investigate the applica-
tion of such computer vision algorithms within the constraints of an AR deployment to provide
an understanding of the environment for AR applications to exploit. This project also explores
two applications which bene�t from semantic understanding in AR: visual output security and
semantically assisted meshing. The contributions of this project are:

� Training an indoor scene semantic segmentation model and deploying it on a physical AR
device (Magic Leap One), providing a platform on which to build rich AR experiences that
utilize the semantic information of a user's environment.

� Exploring the use of reinforcement learning (RL) for visual output security in AR by training
a visual output security policy using RL and deploying it on a physical AR device (Magic
Leap One). This work was published as an abstract and accompanying demo at ACM SenSys
'19 [17].

� Proposing the use of semantic context to aid in mesh generation for AR devices.

In addition, the work presented here is being prepared for submission to the Fifth ACM/IEEE
Symposium on Edge Computing as a position paper.

Section 2 will present work to bring semantic understanding to AR using a semantic segmenta-
tion model, edge server, and Magic Leap One. This work provides the foundation on which AR
applications that utilize semantic information can be built. Section 3 then demonstrates visual
output security, an application of semantic understanding in AR. Speci�cally, RL is used to train a
visual output security policy which is deployed on the Magic Leap One. Section 4 o�ers a proposal
for another application of semantic understanding in an AR context, semantically aware mesh-
ing, which uses semantic cues to improve mesh quality for AR use cases. Subsequently, section 5
discusses future research directions, and section 6 concludes the work presented here.

2 SEMANTIC UNDERSTANDING FOR AUGMENTED REALITY

2.1 Overview

The motivation to build a pipeline for providing semantic understanding to AR applications is
fueled by the belief that a truly immersive AR experience requires a semantic understanding of
the user's environment. However, providing such an understanding of the user's environment
is challenging and requires the fusion of multiple algorithms and systems across disciplines. For
example, building a detailed semantic map of the world would require simultaneous localization
and mapping (SLAM) to automatically generate a map and a fusion of computer vision algorithms
(e.g. object detection, semantic segmentation, and scene understanding) to overlay the map with
semantic information. Further, due to the computational limitations of mobile devices, deploying
high quality vision models with real-time performance will most likely require the use of edge
computing.

While a semantic understanding of the world would be bene�cial to building an immersive
AR application, there is currently no platform which provides this kind of semantic information.
Consequently, this project is aimed at building a proof-of-concept pipeline to provide semantic cues
to AR applications to aid the research and development of AR applications that require semantic
information. To this end, this investigation trains a 2D semantic segmentation model for indoor
scenes and builds a system which projects the semantic information onto 3D space, communicates
this information to a physical AR device (i.e. Magic Leap One), and overlays semantic information

4

Semantic Understanding for AR and Its Applications Duke University, Computer Science, Spring 2020

in the user's �eld of view. All code used in this project is publicly available [16] as well as the
preprocessed data and checkpointed model which had the best performance [15].

2.2 Related Work

2.2.1 Image Classification.AlexNet [35] is often referred to as the image classi�cation network
which ushered in the current era of convolutional deep learning methods applied to image clas-
si�cation tasks with very impressive results. VGG [65] studied the e�ects of deep convolutional
networks for image classi�cation and proposed the use of 16-to-19-layer deep networks, such as
the VGG16 variant which has 13 convolutional layers and 3 dense layers.

While deeper networks tend to have higher image classi�cation accuracy, the authors of ResNet
[23] point out that deeper networks can be di�cult to train. They proposed the use of residual
layers and were able to train an image classi�cation model with 152 layers. Even though complex
models provide high classi�cation accuracy, it is desirable to achieve high accuracy with more
lightweight networks for mobile applications. MobileNet [27] and MobileNetV2 [57] both tackle
this problem and introduce lighter weight image classi�cation models which can also be used as a
relatively lightweight backbone for object detection and semantic segmentation tasks. E�cientNet
[70] also aims to provide more lightweight image classi�cation models and their methodology
produces state-of-the-art performance with fewer parameters than its counterparts.

2.2.2 2D Object Detection.Object detection is a di�cult task because one must predict the class
of an object as well as its location within an image for an arbitrary number of objects. While a
naive approach may break the image into many regions and run classi�cation on each region, such
an approach is not ideal. R-CNN [21] introduced the notion of region proposals to combat this
issue. In R-CNN, 2000 candidate region proposals are generated using selective search [73] and
fed into a convolutional network to generate a feature map which is further fed into an SVM for
�nal classi�cation. Unfortunately, R-CNN does not have real-time performance, which led to the
development of Fast R-CNN [20] and Faster R-CNN [54] which sped up the network using various
optimizations.

Unlike R-CNN and its variants which rely on regions and do not examine the entire image, YOLO
[53] splits an image into an# � # grid and classi�es each grid square as belonging to a speci�c
object. The Bounding boxes are generated along with these class probability which results in much
faster performance. SSD [41] is another widely used object detection network and utilizes an image
classi�cation backbone (VGG16 in the original paper) and has high accuracy while maintaining
good inference speed. SSD utilizes a set of default bounding boxes for which class probabilities
are generated. These default bounding boxes go through a non-maximum suppression step which
generates the �nal bounding boxes.

2.2.3 3D Object Detection.3D object detection aims to generate bounding boxes for objects in 3D
space. While some methods such as [40] and [12] use only a 2D input image to perform monocular
3D object detection without the need for RGB-D sensors, other methods employ the prevalence of
RGB-D sensors and data to perform 3D object detection on point cloud data.

Frustum PointNets [51] utilize mature 2D object detection by �rst using 2D object detection to
generate region proposals. These proposals are extruded to 3D space to generate frustums which
are passed through PointNets [11] for further processing. Unlike Frustum PointNets, PointRCNN
[62] is a model which performs 3D object detection from raw point clouds without the need of
proposal generation from 2D object detection.

2.2.4 2D Semantic Segmentation.Semantic segmentation is the task of assigning each pixel a
class label given an input image. The idea of using models composed of convolutions [42] has

5

Duke University, Computer Science, Spring 2020 Joseph DeChicchis

signi�cantly improved the accuracy of semantic segmentation models. SegNet [6] uses a VGG16
[65] image classi�cation model as an encoder network and builds a decoder network which takes
advantage of the features learned by the image classi�cation model to output pixel-wise class
predictions. While SegNet was originally benchmarked against outdoor driving scenes and indoor
scenes, U-Net [56] is another semantic segmentation network which was originally proposed for
biomedical imaging purposes, although it can be applied to other semantic segmentation tasks.
U-Net builds upon the idea of fully convolutional networks [42] and has a similar encoder-decoder
structure to SegNet. One key di�erence between the two networks is how encoded features are fed
into the decoder network.

The authors of ICNet [80] note that although there has been much work to improve semantic
segmentation model quality, there has not been as much focus on building models which provide
high quality results with low latency. Speci�cally, their results illustrate that running ResNet38 [78]
and PSPNet [81] models can take up to one second on a Nvidia TitanX GPU for a1024� 2048image.
Such a high latency for inference precludes the use of these models in a practical real-time setting.
Their proposed model provides real-time performance while maintaining high quality results.

2.2.5 3D Semantic Segmentation and Scene Understanding.3D semantic segmentation extends
2D semantic segmentation to provide semantic segmentation for point clouds. A challenge here
is how to apply convolutions to sparse point cloud data to generate semantic labels using deep
learning techniques. PointConv [77], PointNet [11] and PointNet++ [52] all provide solutions for
this problem. Note that while these networks can be used for point cloud semantic segmentation,
the algorithms they propose can also be applied to other problems such as 3D object detection.

Work related to 3D semantic segmentation is 3D scene understanding. Some methods utilize
voxels and conditional random �elds to generate semantic and geometric information about scenes
[33] while more recent approaches such as JSIS3D utilize neural networks to perform both semantic
segmentation and instance segmentation [50]. Further, as model performance on 3D segmentation
tasks using point clouds have improved, recent work has moved toward more challenging problems
such as �ne-grained 3D semantic segmentation [46].

2.2.6 SLAM.Work in SLAM is critical to realizing a full semantic understanding of the environment.
One can view an ideal semantic map of the world for an AR setting as a more ambitious version of
the high de�nition (HD) maps [24,72] being build for autonomous driving applications. For example,
work to detect changes in HD maps [48] could be applied to building more detailed semantic maps
for AR. In terms of semantic mapping in a SLAM setting, SLAM can aid in semantic segmentation
by splitting the map generated by SLAM into semantic classes. Semantic information can also aid
in SLAM by providing prior information about an object's geometry. In addition, joint SLAM and
semantic inference can be performed to achieve both semantic segmentation and mapping using a
joint algorithm [8]. In particular, work by Vineet et al. allows for real-time semantic outdoor scene
reconstruction [76].

2.2.7 Edge Computing.Although the cloud has led to the development of many new services,
the limitations of the cloud have become increasingly apparent as we have tried to develop new
applications. Speci�cally, bandwidth and latency issues are particularly di�cult to overcome in
the world of mobile-cloud communication. Such constraints have fueled a recent re-focusing
on edge computing technologies. Research has shown that cloudlets [58] (i.e. compute servers
located physically closer to the end user, also referred to as edge servers) can aid in real-time video
denaturing [68], cognitive assistance applications [13], and virtual as well as augmented reality
[26]. The idea of bringing powerful compute closer to mobile devices to combat bandwidth and

6

Semantic Understanding for AR and Its Applications Duke University, Computer Science, Spring 2020

latency issues has the potential to aid in many applications which require high compute while
maintaining real-time performance.

2.3 System Architecture

Fig. 1. System architecture for providing semantic information using a RGB-D camera and edge server in
an AR se�ing. When the Magic Leap One makes a wireless GET request for semantic information, the edge
server captures an RGB-D frame from the Intel RealSense using a wired connection and executes the semantic
segmentation model. The edge server then projects the segmentation result onto the 3D point cloud and
sends this semantic point cloud to the Magic Leap One wirelessly in response to the GET request.

The overall system architecture is presented in �gure 1. The Magic Leap One [36] head mounted
AR device is chosen as the physical AR device to use for deployment of the system and the Intel
RealSense [28] RGB-D camera is used to collect RGB-D data. The segmentation model performs
semantic segmentation on RGB data and projects it onto the point cloud. An edge server (Dell XPS
desktop computer with Intel i7-9700 CPU, 16GB of RAM, and GeForce RTX 2060 GPU with 6GB of
on-board memory) is used to execute the semantic segmentation model and project the result onto
3D space. This process is akin to how RGB point clouds are generated except that each point is also
semantically classi�ed. The AR device (i.e. Magic Leap One) can request segmented point cloud
data from the server, and the server returns the annotated point cloud for rendering. Training of the
semantic segmentation model is conducted on the edge server, although a real-world deployment
would most likely train more powerful models in cloud data centers.

As �gure 1 indicates, the Intel RealSense is connected to the edge server via a physical wire.
Although ideally the Intel RealSense would be connected to the Magic Leap One, with the Magic
Leap One transmitting RGB-D frames to the edge server for inference, due to limitations with the
Magic Leap One this is currently not possible. In addition, although the Magic Leap One has a depth
sensor as well as camera, information from these sensors cannot be used due to limitations in the
current Magic Leap API. To request semantic information, the Magic Leap One makes a wireless
asynchronous GET request to the server. Then, the edge server captures a RGB-D frame from the
Intel RealSense through a wired connection and executes the semantic segmentation model and
projects the result onto the 3D point cloud. The edge server transmits the result wirelessly to the

7

Duke University, Computer Science, Spring 2020 Joseph DeChicchis

Red Green Blue
Mean 0.491024 0.455375 0.427466

Standard Deviation 0.262995 0.267877 0.270293

Table 1. Channel-level mean and standard deviation of dataset.

Magic Leap One in response to the original GET request which renders the semantic point cloud in
the user's �eld of view. A local wireless network using a NETGEAR Nighthawk X10 router is used
for communication between the Magic Leap One and Intel RealSense.

2.4 Dataset

The SUN RGB-D [30,63,67,79] dataset of indoor scenes was used to train the semantic segmentation
model. The dataset contains 10335 RGB-D images. Only the RGB component was used to train the
model. In addition to an �unknown� class, seven object classes were chosen from the dataset to
train on: bookshelf, desk/table/counter (although these objects are distinct in the dataset, they were
treated as one object class in this work), chair, book/paper (even though these objects are distinct
in the dataset, they were treated as one object class in this work), picture, window, and door.

The dataset needed to be preprocessed and cleaned before it could be used. Quite a few of the
JSON annotation �les were corrupted due to misformatting and needed to be manually corrected. In
addition, invalid annotations (e.g. annotations where theGor ~ coordinate was an invalid location)
needed to be discarded of which there were882. Further, class names were not consistent and
contained spelling errors which required manual inspection to assign them to the correct class.

Images were center cropped to224� 224. Once cropped,1226images no longer contained any
annotations because the cropped region did not have any annotated classes. The images with no
annotations were discarded resulting in9109images which could be used for training and testing.

The images in the dataset had mean and standard deviation in table 1. Images were �rst normalized
by applying the formula

normalized image=
original image� mean

standard deviation
to each pixel's R, G, and B channel before feeding it into the semantic segmentation network for
both training and inference. The annotations were preprocessed from polygon representations
to per-pixel annotations. Hence, each annotation �le contains a224� 224array indexed»� ¼»F ¼
where each element is the class ID associated with the224� 224image. These annotations were
turned into a one-hot encoding on the �y for training, since storing them as one-hot vectors would
have used signi�cantly more disk space.

The eight classes and their distribution in the dataset are shown in table 2. The distribution for
a given class is the proportion of pixels a speci�c class appears in across the entire dataset. It is
important to note the signi�cant imbalance in the dataset as exempli�ed by table 2. This imbalance
was accounted for during training and the methods used are described in the Model Training
section. The data (9109images) were randomly split into a training set (table 3) and a test set (table
4) using a random90•10split resulting in8198training images and911test images (note that both
sets of data have similar class distributions to each other and the overall dataset, as desired).

It is also important to point out that the SUN RGB-D dataset has incomplete annotations. Take
the example in �gure 2. In this example, the annotation for the pictures on the wall are missing
(see legend in �gure 11). Missing annotations can result in a model which does not semantically
segment objects as well as expected in the real-world because the model is evaluated on data

8

Semantic Understanding for AR and Its Applications Duke University, Computer Science, Spring 2020

Class ID # of Instances % of Pixels
Unknown 0 336035069 73”52%
Bookshelf 1 2273833 0”50%

Desk/Table/Counter 2 47156248 10”32%
Chair 3 44957965 9”84%

Book/Paper 4 2891720 0”63%
Picture 5 2838463 0”62%

Window 6 11808008 2”58%
Door 7 9091878 1”99%

Table 2. Per class distribution for the dataset. The distribution is the proportion of pixels for a given class
across the entire dataset.

Class ID # of Instances % of Pixels
Unknown 0 302072880 73”44%
Bookshelf 1 2091497 0”51%

Desk/Table/Counter 2 42791040 10”40%
Chair 3 40423443 9”83%

Book/Paper 4 2696598 0”66%
Picture 5 2538673 0”62%

Window 6 10658005 2”59%
Door 7 8070712 1”96%

Table 3. Training set (8198randomly chosen images) per class distribution. The distribution is the proportion
of pixels for a given class across the training set.

Class ID # of Instances % of Pixels
Unknown 0 33962189 73”97%
Bookshelf 1 182336 0”40%

Desk/Table/Counter 2 4365208 9”51%
Chair 3 4534522 9”88%

Book/Paper 4 195122 0”42%
Picture 5 299790 0”65%

Window 6 1150003 2”50%
Door 7 1021166 2”22%

Table 4. Test set (911randomly chosen images) per class distribution. The distribution is the proportion of
pixels for a given class across the test set.

that contains errors. Further, even if the model learned to segment certain objects well, the �nal
evaluation metrics may not re�ect this because the test data is missing some annotations.

9

Duke University, Computer Science, Spring 2020 Joseph DeChicchis

Fig. 2. Example of missing annotations from the SUN RGB-D dataset. Note that the annotation of the pictures
are missing on the right (see legend in figure 11). Missing annotations can result in a lower quality model
when training. In addition, the accuracy and other quality metrics of the model may not be completely
indicative of real-world performance since the underlying data used to evaluate the model contains errors.

Fig. 3. The semantic segmentation model which was used. The blue �conv" layers are a convolution + batch
normalization + ReLU activation except for the last conv 5-2 layer in the decoder network which uses a
so�max activation. The red layers are upsample layers and yellow �concat" layers are a concatenation of the
two inputs which stack one input on top of another.

2.5 Model Architecture

The architecture of the semantic segmentation network is illustrated in �gure 3. The input to the
model is a224� 224� 3 image and the output is a224� 224� 8 matrix where there is an eight
element vector for each pixel. The index of the eight element vector with the highest value (i.e.
probability) corresponds to the predicted class of the pixel. Because batching is supported, the
actual input size of the model is# � 224� 224� 3 and the actual output size is# � 224� 224� 8
for a given batch size# .

10

Semantic Understanding for AR and Its Applications Duke University, Computer Science, Spring 2020

The model architecture used is similar to SegNet [6]. A pre-trained VGG16 image classi�cation
network, with the �nal three dense layers removed, is used as the encoder backbone of the model. In
addition, the decoder network mirrors the VGG16 backbone just like in SegNet. The key di�erence
is that instead of storing the max pooling indices and using them to upsample decoder network
feature maps to produce sparse feature maps, the network used in this work simply concatenates the
encoder output with the corresponding input in the decoder network. This kind of concatenation
has similarities with U-Net's architecture [56].

Note that the input image size is constrained by the underlying encoder network (i.e. the pre-
trained VGG16 model) and that changing it requires swapping out the encoder network with
a model which can take in other input image sizes. However, the number of output channels
(i.e. number of classes) can be set to any number. Further, the underlying encoder network can
theoretically be switched out for other models such as ResNet [23].

2.6 Model Training

Training was conducted on a GeForce RTX 2060 GPU with 6GB of on-board memory for60epochs.
Total training, at worst, took 12 hours for a batch size of 2. However, training was faster when smaller
batch sizes were used. Batch size was constrained by the GPU memory. Speci�cally, collecting
additional metrics during training required more GPU memory which limited the batch size.

Training the semantic segmentation model was complicated by the signi�cant data imbalance.
To account for the data imbalance, weighted categorical cross entropy was used as the loss function.
This loss was calculated using the function

! = �
1
#

#Õ

8=1

�Õ

2=1

U21~82� 2 log%model¹~8 2 � 2º = �
1
#

#Õ

8=1

�Õ

2=1

U21~82� 2 log~̂8

where# is the number of pixels in a batch,� is the number of categories,~8 is the ground truth for
the i-th pixel,~̂8 is the prediction for the i-th pixel,� 2 is the category with ID2, andU2 is a weight
associated with class2. The weightsU2were calculated using the median frequency method [18].
Speci�cally,

U2 =
<4380=_5 A4@

5 A4@¹2º
where5 A4@¹2º is the number of pixels with class2 divided by the total number of pixels in images
where class2 is present. The<4380=_5 A4@is the median of the all the5 A4@¹2º which are calculated
for each class. The weights used for each class are listed table 5. As the table illustrates, the more
prevalent classes have lower weights, which helps in balancing the loss function so that the model
learns to classify rare objects as well as common objects.

Data was also augmented during training to improve the generalizability of the model. A hori-
zontal �ip was applied randomly with probability0”5. An additional rotation or horizontal shear
was applied with probability0”5 each. For rotations, images were rotated by some random angle
between� 20� and20� . For horizontal shears, a random shear between� 0”2 and0”2 was applied.

As �gure 4 indicates, the model training was successful with both the accuracy increasing and
the loss decreasing in a smooth manner. A detailed evaluation of the model is presented in the
Model Evaluation section.

2.7 Deploying the System

2.7.1 Edge Server Setup.An edge server was developed using the Flask library for python to serve
as a compute node to receive input from the Intel RealSense RGB-D camera and process the data.
The edge server is con�gured to send the AR application a JSON object containing locations of 3D

11

Duke University, Computer Science, Spring 2020 Joseph DeChicchis

Class ID Weight
Unknown 0 0.14385866807
Bookshelf 1 0.90557223126

Desk/Table/Counter 2 0.72059989577
Chair 3 0.66989873421

Book/Paper 4 3.53100851804
Picture 5 2.53715235032

Window 6 1.11641301038
Door 7 1.18609654356

Table 5. The class weights used in the loss function for training.

Fig. 4. Training accuracy and loss plo�ed against training iteration. A single training iteration constitutes
one batch.

�pixels� with corresponding semantic information (i.e. a semantic point cloud). Only points which
have a semantic label other than �Unknown" are sent to the Magic Leap One for rendering to save
bandwidth since the Magic Leap One only renders the seven known semantic classes. The JSON
�le which is transmitted has the following format:

{
" locations ": [

{
"x" : FLOAT,
"y": FLOAT,
"z": FLOAT,
" pixelClass ": CLASS_ID_INT

},
...
{

"x" : FLOAT,
"y": FLOAT,
"z": FLOAT,
" pixelClass ": CLASS_ID_INT

}
]

}

12

	Abstract
	Contents
	1 Introduction
	2 Semantic Understanding for Augmented Reality
	2.1 Overview
	2.2 Related Work
	2.3 System Architecture
	2.4 Dataset
	2.5 Model Architecture
	2.6 Model Training
	2.7 Deploying the System
	2.8 Model Evaluation
	2.9 System Performance
	2.10 Discussion

	3 Adaptive Augmented Reality Visual Output Security using Reinforcement Learning
	3.1 Overview
	3.2 Related Work
	3.3 Reinforcement Learning Trained Visual Output Security Policy
	3.4 Visual Output Security Policy Training
	3.5 Visual Output Security Policy Training Results
	3.6 Deploying the Visual Output Security Policy
	3.7 Discussion

	4 Semantically Aware Meshing
	4.1 Overview of Semantically Aware Meshing
	4.2 Related Work
	4.3 Semantically Aware Meshing: A Proposal

	5 Future Work
	6 Conclusion
	Acknowledgments
	References

