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1 INTRODUCTION
Augmented reality (AR) technology is becoming increasingly ubiquitous due to the proliferation of
mobile devices and developer toolkits such as ARKit [4] and ARCore [22] as well as the introduction
of head mounted AR devices such as the HoloLens [43] and the Magic Leap One [36] which
enable rich and immersive AR experiences. Furthermore, we can expect consumer head mounted
AR devices to enter the market as hardware improves, form factors become more portable and
comfortable, and unit costs decrease. It has been reported that Apple is working on consumer AR
glasses [71] and they are most definitely not the only consumer technology company working to
bring AR to the masses.
Even though AR applications are available to consumers, there is still much to be desired in

terms of a truly immersive and rich experience, even on dedicated AR devices such as the Magic
Leap One. Ideal hardware improvements for future generation devices include: a smaller and lighter
form factor, larger field of view, better color reproduction, and higher resolution displays. While
these hardware improvements will surely be welcome by users of AR devices, software needs to
improve as well. In particular, in order for AR applications to not only overlay content in front
of the user’s field of view but also enable users to interact with digital content requires software
improvements in several areas, such as better simultaneous localization and mapping (SLAM),
semantic scene understanding, and multi-user AR. A seamless interaction between the physical
and virtual worlds, sometimes referred to as Mixed Reality [44], would allow for a much more
immersive AR experience.

Current AR devices already have a limited understanding of the user’s environment. For example,
the Magic Leap One is able to create a mesh of the user’s environment and localize the user within
this mesh. The device can also store meshes and share them with the cloud. However, meshes only
give AR applications a sense of where surfaces are, without any information on what that surface is
(e.g. table, wall, floor etc.). Nonetheless, specific algorithms have been developed for mobile AR to,
for example, understand the detailed features of a user’s face. Although such technology is used by
Snapchat [66] and Facebook Messenger [19] to overlay a user’s face with various artificial masks, it
does not provide a more general understanding of the user’s environment. While Apple introduced
People Occlusion to ARKit [4], it is still limited to only detecting occlusion for people in a scene
and cannot detect occlusion for any object.
If AR devices were able to have a fuller semantic understanding of the user’s environment,

then the user’s experience could be greatly improved. That is, in an ideal scenario, an AR device
would know where various objects are in a scene (e.g. chair, table, book etc.) and be able to draw
bounding boxes around them or even segment them in 3D space. Such a granular and fuller semantic
understanding of the environment has the potential to be applied to:

• Visual output security for AR devices [2, 17, 37, 38, 55]. Knowing what objects are in a scene
is important for effective visual output security and can also enhance the user experience in
general by, for example, not occluding other users’ faces when wearing a head mounted AR
device.

• Better meshing. The meshes generated by current AR devices do not mesh surfaces very well
(e.g. the meshes for flat tables tend to have unevenness). However, if the meshing algorithm
knew that a certain region was a table, for example, it could smooth out the mesh. In this
manner, semantic information could inform meshing algorithms to improve their meshes.

• Building a detailed semantic spatial map of the world (i.e. a “reality map”) to improve the AR
experience by seamlessly mixing the physical and virtual worlds [14]. For example, a reality
map with accurate localization would allow an AR application to persist virtual objects in
physical space.
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The computer vision community, empowered by advances in deep learning thanks to bigger data
sets, better algorithms and powerful compute, have, in recent years, made tremendous progress
in image classification [23, 27, 35, 57, 65, 70], semantic segmentation [6, 56, 78, 80, 81] and object
detection [20, 21, 41, 53, 54]. Consequently, the aim of this project is to investigate the applica-
tion of such computer vision algorithms within the constraints of an AR deployment to provide
an understanding of the environment for AR applications to exploit. This project also explores
two applications which benefit from semantic understanding in AR: visual output security and
semantically assisted meshing. The contributions of this project are:

• Training an indoor scene semantic segmentation model and deploying it on a physical AR
device (Magic Leap One), providing a platform on which to build rich AR experiences that
utilize the semantic information of a user’s environment.

• Exploring the use of reinforcement learning (RL) for visual output security in AR by training
a visual output security policy using RL and deploying it on a physical AR device (Magic
Leap One). This work was published as an abstract and accompanying demo at ACM SenSys
’19 [17].

• Proposing the use of semantic context to aid in mesh generation for AR devices.

In addition, the work presented here is being prepared for submission to the Fifth ACM/IEEE
Symposium on Edge Computing as a position paper.

Section 2 will present work to bring semantic understanding to AR using a semantic segmenta-
tion model, edge server, and Magic Leap One. This work provides the foundation on which AR
applications that utilize semantic information can be built. Section 3 then demonstrates visual
output security, an application of semantic understanding in AR. Specifically, RL is used to train a
visual output security policy which is deployed on the Magic Leap One. Section 4 offers a proposal
for another application of semantic understanding in an AR context, semantically aware mesh-
ing, which uses semantic cues to improve mesh quality for AR use cases. Subsequently, section 5
discusses future research directions, and section 6 concludes the work presented here.

2 SEMANTIC UNDERSTANDING FOR AUGMENTED REALITY
2.1 Overview
The motivation to build a pipeline for providing semantic understanding to AR applications is
fueled by the belief that a truly immersive AR experience requires a semantic understanding of
the user’s environment. However, providing such an understanding of the user’s environment
is challenging and requires the fusion of multiple algorithms and systems across disciplines. For
example, building a detailed semantic map of the world would require simultaneous localization
and mapping (SLAM) to automatically generate a map and a fusion of computer vision algorithms
(e.g. object detection, semantic segmentation, and scene understanding) to overlay the map with
semantic information. Further, due to the computational limitations of mobile devices, deploying
high quality vision models with real-time performance will most likely require the use of edge
computing.
While a semantic understanding of the world would be beneficial to building an immersive

AR application, there is currently no platform which provides this kind of semantic information.
Consequently, this project is aimed at building a proof-of-concept pipeline to provide semantic cues
to AR applications to aid the research and development of AR applications that require semantic
information. To this end, this investigation trains a 2D semantic segmentation model for indoor
scenes and builds a system which projects the semantic information onto 3D space, communicates
this information to a physical AR device (i.e. Magic Leap One), and overlays semantic information
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in the user’s field of view. All code used in this project is publicly available [16] as well as the
preprocessed data and checkpointed model which had the best performance [15].

2.2 Related Work
2.2.1 Image Classification. AlexNet [35] is often referred to as the image classification network
which ushered in the current era of convolutional deep learning methods applied to image clas-
sification tasks with very impressive results. VGG [65] studied the effects of deep convolutional
networks for image classification and proposed the use of 16-to-19-layer deep networks, such as
the VGG16 variant which has 13 convolutional layers and 3 dense layers.

While deeper networks tend to have higher image classification accuracy, the authors of ResNet
[23] point out that deeper networks can be difficult to train. They proposed the use of residual
layers and were able to train an image classification model with 152 layers. Even though complex
models provide high classification accuracy, it is desirable to achieve high accuracy with more
lightweight networks for mobile applications. MobileNet [27] and MobileNetV2 [57] both tackle
this problem and introduce lighter weight image classification models which can also be used as a
relatively lightweight backbone for object detection and semantic segmentation tasks. EfficientNet
[70] also aims to provide more lightweight image classification models and their methodology
produces state-of-the-art performance with fewer parameters than its counterparts.

2.2.2 2D Object Detection. Object detection is a difficult task because one must predict the class
of an object as well as its location within an image for an arbitrary number of objects. While a
naive approach may break the image into many regions and run classification on each region, such
an approach is not ideal. R-CNN [21] introduced the notion of region proposals to combat this
issue. In R-CNN, 2000 candidate region proposals are generated using selective search [73] and
fed into a convolutional network to generate a feature map which is further fed into an SVM for
final classification. Unfortunately, R-CNN does not have real-time performance, which led to the
development of Fast R-CNN [20] and Faster R-CNN [54] which sped up the network using various
optimizations.

Unlike R-CNN and its variants which rely on regions and do not examine the entire image, YOLO
[53] splits an image into an 𝑁 × 𝑁 grid and classifies each grid square as belonging to a specific
object. The Bounding boxes are generated along with these class probability which results in much
faster performance. SSD [41] is another widely used object detection network and utilizes an image
classification backbone (VGG16 in the original paper) and has high accuracy while maintaining
good inference speed. SSD utilizes a set of default bounding boxes for which class probabilities
are generated. These default bounding boxes go through a non-maximum suppression step which
generates the final bounding boxes.

2.2.3 3D Object Detection. 3D object detection aims to generate bounding boxes for objects in 3D
space. While some methods such as [40] and [12] use only a 2D input image to perform monocular
3D object detection without the need for RGB-D sensors, other methods employ the prevalence of
RGB-D sensors and data to perform 3D object detection on point cloud data.
Frustum PointNets [51] utilize mature 2D object detection by first using 2D object detection to

generate region proposals. These proposals are extruded to 3D space to generate frustums which
are passed through PointNets [11] for further processing. Unlike Frustum PointNets, PointRCNN
[62] is a model which performs 3D object detection from raw point clouds without the need of
proposal generation from 2D object detection.

2.2.4 2D Semantic Segmentation. Semantic segmentation is the task of assigning each pixel a
class label given an input image. The idea of using models composed of convolutions [42] has
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significantly improved the accuracy of semantic segmentation models. SegNet [6] uses a VGG16
[65] image classification model as an encoder network and builds a decoder network which takes
advantage of the features learned by the image classification model to output pixel-wise class
predictions. While SegNet was originally benchmarked against outdoor driving scenes and indoor
scenes, U-Net [56] is another semantic segmentation network which was originally proposed for
biomedical imaging purposes, although it can be applied to other semantic segmentation tasks.
U-Net builds upon the idea of fully convolutional networks [42] and has a similar encoder-decoder
structure to SegNet. One key difference between the two networks is how encoded features are fed
into the decoder network.
The authors of ICNet [80] note that although there has been much work to improve semantic

segmentation model quality, there has not been as much focus on building models which provide
high quality results with low latency. Specifically, their results illustrate that running ResNet38 [78]
and PSPNet [81] models can take up to one second on a Nvidia TitanX GPU for a 1024× 2048 image.
Such a high latency for inference precludes the use of these models in a practical real-time setting.
Their proposed model provides real-time performance while maintaining high quality results.

2.2.5 3D Semantic Segmentation and Scene Understanding. 3D semantic segmentation extends
2D semantic segmentation to provide semantic segmentation for point clouds. A challenge here
is how to apply convolutions to sparse point cloud data to generate semantic labels using deep
learning techniques. PointConv [77], PointNet [11] and PointNet++ [52] all provide solutions for
this problem. Note that while these networks can be used for point cloud semantic segmentation,
the algorithms they propose can also be applied to other problems such as 3D object detection.
Work related to 3D semantic segmentation is 3D scene understanding. Some methods utilize

voxels and conditional random fields to generate semantic and geometric information about scenes
[33] while more recent approaches such as JSIS3D utilize neural networks to perform both semantic
segmentation and instance segmentation [50]. Further, as model performance on 3D segmentation
tasks using point clouds have improved, recent work has moved toward more challenging problems
such as fine-grained 3D semantic segmentation [46].

2.2.6 SLAM. Work in SLAM is critical to realizing a full semantic understanding of the environment.
One can view an ideal semantic map of the world for an AR setting as a more ambitious version of
the high definition (HD) maps [24, 72] being build for autonomous driving applications. For example,
work to detect changes in HD maps [48] could be applied to building more detailed semantic maps
for AR. In terms of semantic mapping in a SLAM setting, SLAM can aid in semantic segmentation
by splitting the map generated by SLAM into semantic classes. Semantic information can also aid
in SLAM by providing prior information about an object’s geometry. In addition, joint SLAM and
semantic inference can be performed to achieve both semantic segmentation and mapping using a
joint algorithm [8]. In particular, work by Vineet et al. allows for real-time semantic outdoor scene
reconstruction [76].

2.2.7 Edge Computing. Although the cloud has led to the development of many new services,
the limitations of the cloud have become increasingly apparent as we have tried to develop new
applications. Specifically, bandwidth and latency issues are particularly difficult to overcome in
the world of mobile-cloud communication. Such constraints have fueled a recent re-focusing
on edge computing technologies. Research has shown that cloudlets [58] (i.e. compute servers
located physically closer to the end user, also referred to as edge servers) can aid in real-time video
denaturing [68], cognitive assistance applications [13], and virtual as well as augmented reality
[26]. The idea of bringing powerful compute closer to mobile devices to combat bandwidth and
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latency issues has the potential to aid in many applications which require high compute while
maintaining real-time performance.

2.3 System Architecture

Fig. 1. System architecture for providing semantic information using a RGB-D camera and edge server in
an AR setting. When the Magic Leap One makes a wireless GET request for semantic information, the edge
server captures an RGB-D frame from the Intel RealSense using a wired connection and executes the semantic
segmentation model. The edge server then projects the segmentation result onto the 3D point cloud and
sends this semantic point cloud to the Magic Leap One wirelessly in response to the GET request.

The overall system architecture is presented in figure 1. The Magic Leap One [36] head mounted
AR device is chosen as the physical AR device to use for deployment of the system and the Intel
RealSense [28] RGB-D camera is used to collect RGB-D data. The segmentation model performs
semantic segmentation on RGB data and projects it onto the point cloud. An edge server (Dell XPS
desktop computer with Intel i7-9700 CPU, 16GB of RAM, and GeForce RTX 2060 GPU with 6GB of
on-board memory) is used to execute the semantic segmentation model and project the result onto
3D space. This process is akin to how RGB point clouds are generated except that each point is also
semantically classified. The AR device (i.e. Magic Leap One) can request segmented point cloud
data from the server, and the server returns the annotated point cloud for rendering. Training of the
semantic segmentation model is conducted on the edge server, although a real-world deployment
would most likely train more powerful models in cloud data centers.

As figure 1 indicates, the Intel RealSense is connected to the edge server via a physical wire.
Although ideally the Intel RealSense would be connected to the Magic Leap One, with the Magic
Leap One transmitting RGB-D frames to the edge server for inference, due to limitations with the
Magic Leap One this is currently not possible. In addition, although the Magic Leap One has a depth
sensor as well as camera, information from these sensors cannot be used due to limitations in the
current Magic Leap API. To request semantic information, the Magic Leap One makes a wireless
asynchronous GET request to the server. Then, the edge server captures a RGB-D frame from the
Intel RealSense through a wired connection and executes the semantic segmentation model and
projects the result onto the 3D point cloud. The edge server transmits the result wirelessly to the
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Red Green Blue
Mean 0.491024 0.455375 0.427466

Standard Deviation 0.262995 0.267877 0.270293

Table 1. Channel-level mean and standard deviation of dataset.

Magic Leap One in response to the original GET request which renders the semantic point cloud in
the user’s field of view. A local wireless network using a NETGEAR Nighthawk X10 router is used
for communication between the Magic Leap One and Intel RealSense.

2.4 Dataset
The SUN RGB-D [30, 63, 67, 79] dataset of indoor scenes was used to train the semantic segmentation
model. The dataset contains 10335 RGB-D images. Only the RGB component was used to train the
model. In addition to an “unknown” class, seven object classes were chosen from the dataset to
train on: bookshelf, desk/table/counter (although these objects are distinct in the dataset, they were
treated as one object class in this work), chair, book/paper (even though these objects are distinct
in the dataset, they were treated as one object class in this work), picture, window, and door.
The dataset needed to be preprocessed and cleaned before it could be used. Quite a few of the

JSON annotation files were corrupted due to misformatting and needed to be manually corrected. In
addition, invalid annotations (e.g. annotations where the 𝑥 or 𝑦 coordinate was an invalid location)
needed to be discarded of which there were 882. Further, class names were not consistent and
contained spelling errors which required manual inspection to assign them to the correct class.
Images were center cropped to 224 × 224. Once cropped, 1226 images no longer contained any

annotations because the cropped region did not have any annotated classes. The images with no
annotations were discarded resulting in 9109 images which could be used for training and testing.

The images in the dataset hadmean and standard deviation in table 1. Imageswere first normalized
by applying the formula

normalized image =
original image −mean
standard deviation

to each pixel’s R, G, and B channel before feeding it into the semantic segmentation network for
both training and inference. The annotations were preprocessed from polygon representations
to per-pixel annotations. Hence, each annotation file contains a 224 × 224 array indexed [ℎ] [𝑤]
where each element is the class ID associated with the 224 × 224 image. These annotations were
turned into a one-hot encoding on the fly for training, since storing them as one-hot vectors would
have used significantly more disk space.

The eight classes and their distribution in the dataset are shown in table 2. The distribution for
a given class is the proportion of pixels a specific class appears in across the entire dataset. It is
important to note the significant imbalance in the dataset as exemplified by table 2. This imbalance
was accounted for during training and the methods used are described in the Model Training
section. The data (9109 images) were randomly split into a training set (table 3) and a test set (table
4) using a random 90/10 split resulting in 8198 training images and 911 test images (note that both
sets of data have similar class distributions to each other and the overall dataset, as desired).
It is also important to point out that the SUN RGB-D dataset has incomplete annotations. Take

the example in figure 2. In this example, the annotation for the pictures on the wall are missing
(see legend in figure 11). Missing annotations can result in a model which does not semantically
segment objects as well as expected in the real-world because the model is evaluated on data
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Class ID # of Instances % of Pixels
Unknown 0 336035069 73.52%
Bookshelf 1 2273833 0.50%

Desk/Table/Counter 2 47156248 10.32%
Chair 3 44957965 9.84%

Book/Paper 4 2891720 0.63%
Picture 5 2838463 0.62%
Window 6 11808008 2.58%
Door 7 9091878 1.99%

Table 2. Per class distribution for the dataset. The distribution is the proportion of pixels for a given class
across the entire dataset.

Class ID # of Instances % of Pixels
Unknown 0 302072880 73.44%
Bookshelf 1 2091497 0.51%

Desk/Table/Counter 2 42791040 10.40%
Chair 3 40423443 9.83%

Book/Paper 4 2696598 0.66%
Picture 5 2538673 0.62%
Window 6 10658005 2.59%
Door 7 8070712 1.96%

Table 3. Training set (8198 randomly chosen images) per class distribution. The distribution is the proportion
of pixels for a given class across the training set.

Class ID # of Instances % of Pixels
Unknown 0 33962189 73.97%
Bookshelf 1 182336 0.40%

Desk/Table/Counter 2 4365208 9.51%
Chair 3 4534522 9.88%

Book/Paper 4 195122 0.42%
Picture 5 299790 0.65%
Window 6 1150003 2.50%
Door 7 1021166 2.22%

Table 4. Test set (911 randomly chosen images) per class distribution. The distribution is the proportion of
pixels for a given class across the test set.

that contains errors. Further, even if the model learned to segment certain objects well, the final
evaluation metrics may not reflect this because the test data is missing some annotations.
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Fig. 2. Example of missing annotations from the SUN RGB-D dataset. Note that the annotation of the pictures
are missing on the right (see legend in figure 11). Missing annotations can result in a lower quality model
when training. In addition, the accuracy and other quality metrics of the model may not be completely
indicative of real-world performance since the underlying data used to evaluate the model contains errors.

Fig. 3. The semantic segmentation model which was used. The blue “conv" layers are a convolution + batch
normalization + ReLU activation except for the last conv 5-2 layer in the decoder network which uses a
softmax activation. The red layers are upsample layers and yellow “concat" layers are a concatenation of the
two inputs which stack one input on top of another.

2.5 Model Architecture
The architecture of the semantic segmentation network is illustrated in figure 3. The input to the
model is a 224 × 224 × 3 image and the output is a 224 × 224 × 8 matrix where there is an eight
element vector for each pixel. The index of the eight element vector with the highest value (i.e.
probability) corresponds to the predicted class of the pixel. Because batching is supported, the
actual input size of the model is 𝑁 × 224 × 224 × 3 and the actual output size is 𝑁 × 224 × 224 × 8
for a given batch size 𝑁 .
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The model architecture used is similar to SegNet [6]. A pre-trained VGG16 image classification
network, with the final three dense layers removed, is used as the encoder backbone of the model. In
addition, the decoder network mirrors the VGG16 backbone just like in SegNet. The key difference
is that instead of storing the max pooling indices and using them to upsample decoder network
feature maps to produce sparse feature maps, the network used in this work simply concatenates the
encoder output with the corresponding input in the decoder network. This kind of concatenation
has similarities with U-Net’s architecture [56].
Note that the input image size is constrained by the underlying encoder network (i.e. the pre-

trained VGG16 model) and that changing it requires swapping out the encoder network with
a model which can take in other input image sizes. However, the number of output channels
(i.e. number of classes) can be set to any number. Further, the underlying encoder network can
theoretically be switched out for other models such as ResNet [23].

2.6 Model Training
Training was conducted on a GeForce RTX 2060 GPU with 6GB of on-board memory for 60 epochs.
Total training, at worst, took 12 hours for a batch size of 2. However, trainingwas faster when smaller
batch sizes were used. Batch size was constrained by the GPU memory. Specifically, collecting
additional metrics during training required more GPU memory which limited the batch size.
Training the semantic segmentation model was complicated by the significant data imbalance.

To account for the data imbalance, weighted categorical cross entropy was used as the loss function.
This loss was calculated using the function

𝐿 = − 1
𝑁

𝑁∑
𝑖=1

𝐶∑
𝑐=1

𝛼𝑐1𝑦𝑖 ∈𝐶𝑐
log 𝑃model (𝑦𝑖 ∈ 𝐶𝑐 ) = − 1

𝑁

𝑁∑
𝑖=1

𝐶∑
𝑐=1

𝛼𝑐1𝑦𝑖 ∈𝐶𝑐
log𝑦𝑖

where 𝑁 is the number of pixels in a batch,𝐶 is the number of categories, 𝑦𝑖 is the ground truth for
the i-th pixel, 𝑦𝑖 is the prediction for the i-th pixel, 𝐶𝑐 is the category with ID 𝑐 , and 𝛼𝑐 is a weight
associated with class 𝑐 . The weights 𝛼𝑐were calculated using the median frequency method [18].
Specifically,

𝛼𝑐 =
𝑚𝑒𝑑𝑖𝑎𝑛_𝑓 𝑟𝑒𝑞

𝑓 𝑟𝑒𝑞(𝑐)
where 𝑓 𝑟𝑒𝑞(𝑐) is the number of pixels with class 𝑐 divided by the total number of pixels in images
where class 𝑐 is present. The𝑚𝑒𝑑𝑖𝑎𝑛_𝑓 𝑟𝑒𝑞 is the median of the all the 𝑓 𝑟𝑒𝑞(𝑐) which are calculated
for each class. The weights used for each class are listed table 5. As the table illustrates, the more
prevalent classes have lower weights, which helps in balancing the loss function so that the model
learns to classify rare objects as well as common objects.
Data was also augmented during training to improve the generalizability of the model. A hori-

zontal flip was applied randomly with probability 0.5. An additional rotation or horizontal shear
was applied with probability 0.5 each. For rotations, images were rotated by some random angle
between −20◦ and 20◦. For horizontal shears, a random shear between −0.2 and 0.2 was applied.
As figure 4 indicates, the model training was successful with both the accuracy increasing and

the loss decreasing in a smooth manner. A detailed evaluation of the model is presented in the
Model Evaluation section.

2.7 Deploying the System
2.7.1 Edge Server Setup. An edge server was developed using the Flask library for python to serve
as a compute node to receive input from the Intel RealSense RGB-D camera and process the data.
The edge server is configured to send the AR application a JSON object containing locations of 3D
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Class ID Weight
Unknown 0 0.14385866807
Bookshelf 1 0.90557223126

Desk/Table/Counter 2 0.72059989577
Chair 3 0.66989873421

Book/Paper 4 3.53100851804
Picture 5 2.53715235032
Window 6 1.11641301038
Door 7 1.18609654356

Table 5. The class weights used in the loss function for training.

Fig. 4. Training accuracy and loss plotted against training iteration. A single training iteration constitutes
one batch.

“pixels” with corresponding semantic information (i.e. a semantic point cloud). Only points which
have a semantic label other than “Unknown" are sent to the Magic Leap One for rendering to save
bandwidth since the Magic Leap One only renders the seven known semantic classes. The JSON
file which is transmitted has the following format:

{
"locations": [

{
"x": FLOAT,
"y": FLOAT,
"z": FLOAT,
"pixelClass": CLASS_ID_INT

},
...
{

"x": FLOAT,
"y": FLOAT,
"z": FLOAT,
"pixelClass": CLASS_ID_INT

}
]

}
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The Magic Leap One can query the server for the semantic point cloud using an http GET request
over the local network. Once the server receives a GET request it captures an RGB-D frame from
the Intel RealSense, runs inference on the semantic segmentation model, and projects the result
onto 3D space. The resulting semantic point cloud is sent back to the Magic Leap One.

Fig. 5. Custom mount used to mount the Intel RealSense on the Magic Leap One.

2.7.2 Custom Mount and Device Calibration. A custom mount was designed using CAD software
and printed using a 3D printer to mount the Intel RealSense camera on the Magic Leap One (see
figure 5). The mount consists of a cradle for the Intel RealSense camera (blue component) which
fits on top of the red support component that is mounted on the Magic Leap One. While the mount
and camera increase the weight on the overall device, there is no other ergonomic change as a
result of wearing the Magic Leap One with the custom mount attached.

Fig. 6. The mismatch between what the Intel RealSense camera captures (left) and what the user sees (right).

Once the mount was designed and 3D printed, the Intel RealSense camera had to be calibrated
to the Magic Leap One’s field of view. The calibration problem is depicted in figure 6. The Intel
RealSense camera captures a 640𝑥 × 480𝑦 RGB image with depth values measured in meters. The
semantic segmentation algorithm center crops the camera frame to a 224𝑥 ×224𝑦 image and projects
the semantic labels onto the depth data to generate a 224𝑥 × 224𝑦 × 𝑑𝑒𝑝𝑡ℎ𝑧 semantic point cloud.
Because of misalignment between what the camera captures and the user’s field of view, the

(𝑥,𝑦) coordinates of the point cloud cannot be simply scaled to the Magic Leap’s coordinate system.
Since the Intel RealSense camera is mounted on top of the Magic Leap One, there is a vertical
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misalignment between the camera’s frame and user’s field of view (i.e. the camera captures more
information in the vertical direction above the user’s field of view). In addition, because the Intel
RealSense camera’s RGB sensor is not centered exactly in the middle, there is also a horizontal
misalignment between the camera’s frame and user’s field of view (i.e. the camera captures more
information to the left of the user’s field of view). Therefore, the calibration process needed to
apply 𝑥 and 𝑦 transforms to the semantic point cloud to align it with the user’s field of view. In
addition to transforming the (𝑥,𝑦) coordinates the 𝑧 value also needed to be transformed because
the Magic Leap uses a different coordinate system. The transform values were obtained through
manual inspection. The transformation for a (𝑥,𝑦, 𝑧) semantic point cloud point to the user’s field
of view is,

𝑧 ′ =
𝑧 − 0.37

1.5
,

𝑥 ′ = 𝑥 − 100,
and

𝑦 ′ = 𝑦 − 100.
While the transformed 𝑧 ′ can be used directly in the Magic Leap’s coordinate system, the 𝑥 and

𝑦 values need to be further normalized to the Magic Leap’s coordinate system (i.e. while the width
and height of the semantic point cloud is 224 pixels, the Magic Leap’s view’s width and height are
not, as indicated by the question marks in figure 6). Obtaining this normalization factor proved
more difficult than expected because, due to the nature of the Magic Leap’s API and its integration
with Unity, the normalization factor depends on the depth 𝑧.

Fig. 7. An illustration of the calibration application (this not a screenshot of the application).

A custom Magic Leap application was developed to derive a function which maps 𝑧 values to
the 𝑥 and 𝑦 normalization factors. Figure 7 illustrates this calibration application. The user can
use a hand-held controller to change the 𝑥_𝑤𝑖𝑑𝑡ℎ and 𝑦_𝑤𝑖𝑑𝑡ℎ of a given 𝑧 value until the four
colored alignment squares align with the outer edge of the user’s field of view. Using this calibration
application, the 𝑥_𝑤𝑖𝑑𝑡ℎ and 𝑦_𝑤𝑖𝑑𝑡ℎ values were obtained for 𝑧 values ranging from 0 to 1 in
0.1 increments. The data points were plotted and best-fit line calculated to produce a function to
calculate 𝑥_𝑤𝑖𝑑𝑡ℎ and 𝑦_𝑤𝑖𝑑𝑡ℎ given an arbitrary 𝑧 value (see figure 8). Note the linear relationship
between 𝑧 values and 𝑥_𝑤𝑖𝑑𝑡ℎ and 𝑦_𝑤𝑖𝑑𝑡ℎ. From the data, the following functions were derived
based on the linear line of best fit:

𝑥_𝑤𝑖𝑑𝑡ℎ(𝑧) = 0.725 × 𝑧 + 0.0649

14



Semantic Understanding for AR and Its Applications Duke University, Computer Science, Spring 2020

Fig. 8. Result of manually calibrating the normalization factors 𝑥_𝑤𝑖𝑑𝑡ℎ and 𝑦_𝑤𝑖𝑑𝑡ℎ with a custom calibra-
tion application.

and
𝑦_𝑤𝑖𝑑𝑡ℎ(𝑧) = 0.521 × 𝑧 + 0.0426.

Using the above functions, the final transformation for the (𝑥,𝑦) coordinate of the semantic point
cloud to the (𝑥,𝑦) coordinate of the Magic Leap given a transformed 𝑧 value 𝑧 ′ is

𝑥 ′ =
𝑥 − 100

𝑥_𝑤𝑖𝑑𝑡ℎ(𝑧 ′)
and

𝑦 ′ =
𝑦 − 100

𝑦_𝑤𝑖𝑑𝑡ℎ(𝑧 ′) .

2.7.3 Overlaying Semantic Information in the User’s Field of View. An AR application was developed
for the Magic Leap One which can query the edge server for the semantic point cloud and display
it in the user’s field of view. Examples of what the user sees are in figure 9. Note that the semantic
overlay is slightly misaligned in the screenshots because the Magic Leap One’s screenshot function
does not correctly align holograms to match what the user sees.
Displaying the semantic overlay requires rendering thousands of points efficiently. The Unity

Mesh object was used to accomplish this because the Magic Leap One is optimized to display Unity
Mesh objects. Normally, a mesh is composed of vertices which define surfaces to be rendered.
However, in this case a custom shader was used to render just the vertex points efficiently without
rendering surfaces.

2.8 Model Evaluation
Figure 10 contains ten examples of outputs from the trained semantic segmentation model along
with the corresponding input image, normalized image, and true mask. Per class accuracy, balanced
accuracy and IoU are presented in table 6.
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Fig. 9. Screenshots of the Magic Leap One application which was developed to overlay semantic information
in the user’s field of view. Note the misalignment of semantic information is an artifact of the Magic Leap
One’s limited screenshot capability. The semantic overlay is much better aligned when viewed using the
Magic Leap One.

Class ID Accuracy Balanced Accuracy IoU
Unknown 0 26.44% 50.33% 0.1357
Bookshelf 1 99.55% 49.98% 0.5006

Desk/Table/Counter 2 82.88% 60.31% 0.4934
Chair 3 78.22% 70.37% 0.4901

Book/Paper 4 99.57% 50.00% 0.4986
Picture 5 99.34% 50.01% 0.5054
Window 6 40.86% 65.88% 0.2203
Door 7 97.74% 50.08% 0.4911

Table 6. Per class accuracy, balanced accuracy, and IoU of the semantic segmentation model on the test set.

Overall the model learned quite well, as can be seen qualitatively from figure 10. Although the
model has some weaknesses in outputting clear edges when segmenting objects (see the bottom
left example in figure 10 where the group of chairs is not distinguishable in the model output), the
model nonetheless segments different objects quite well. For example, the ground truth label in the
second image from the top of the left column in figure 10 is missing annotations for the pictures on

16



Semantic Understanding for AR and Its Applications Duke University, Computer Science, Spring 2020

Fig. 10. Examples of input image, normalized input image, true mask and predicted mask obtained from the
trained semantic segmentation model. See legend in figure 11.

Fig. 11. Legend for segmentation class colors. When semantic information is displayed on the Magic Leap
One the “Unknown" class is not displayed.

the wall. However, the model predicts their presence and segments them with reasonable quality.
In another such example, the ground truth label in the second image from the top of the right
column in figure 10 is missing annotations for the window but the model segments the window
quite well. Further, the ground truth label in the bottom image of the left column in figure 10 does
not contain an annotation for the table attached to the chair in the foreground but the model clearly
segments the table. This qualitative analysis shows that the semantic segmentation model was able
to learn even though the dataset it was trained on contains missing annotations. Moreover, the
model is able to segment objects correctly even for objects where the ground truth label is missing
the annotation.
The quantitative data from table 6 must be viewed in the context that the test set ground truth

labels contain missing annotations due to the imperfections in the dataset. Therefore, even though
some metrics may seem low, it is possible that the model is actually predicting objects well, as
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observed qualitatively above in cases where the model correctly segments objects for which the
annotation is missing in the ground truth label.

The raw per-pixel accuracy numbers from table 6 are very high for some classes (i.e. bookshelf,
book/paper, picture, door) most likely because the accuracy is skewed towards correct classification
of true negatives. The balanced accuracy presents a more complete picture in which bookshelf,
book/paper, picture and door all have lower accuracy than desk/table/counter, window, and chair.
The IoU is consistent among the classes and is similar to the overall IoU reported by the authors of
SegNet [6]. However, the IoU for the unknown class and windows is significantly lower than the
other classes. The model segmenting objects which are not annotated in the ground truth label
may be the cause the low IoU for the unknown class. Nonetheless, the relatively high IoU metric
for most classes and high balanced accuracy for chairs and desk/table/counter illustrate that the
model segments indoor objects fairly well. Further, the data from table 6 also suggest that the model
generalized to new input with the aid of the data augmentation discussed above.

2.9 System Performance
The round trip latency from the Magic Leap One requesting semantic information and to receiving
it hovered at around 500ms. Unfortunately, this did not allow for real-time performance. The high
latency was most likely due to two factors: an unoptimized network and the model being executed
on the CPU. There was high round trip network latency (in the 100s of ms) even when there was
no payload and no inference being performed, and the observed latency varied from as low as 50ms
to as high as 1000ms.
Running model inference on the GPU would likely significantly improve the inference latency,

bringing down the overall round trip time. In addition, network optimizations may help in bringing
down overhead, reducing the overall system latency as well. Nonetheless, the semantic overlay,
once calibrated, was of quite high quality and even the depth of the overly could be perceived
because of its depth component.

2.10 Discussion
The SegNet [6] and U-Net [56] inspired semantic segmentation model with a VGG16 [65] backbone
which was trained produces qualitatively good semantic segmentations of indoor scenes. While
some object classes had lower accuracy, the model also learned to segment objects better than
the ground truth label in some cases, demonstrating its robustness. The model’s performance on
the test set also illustrates its generalizability to indoor scenes which were not in the original
dataset, and semantic segmentation output for the model worked well in the novel lab environment,
even though images from the lab were not present in the dataset (see figure 9 for examples of the
model semantically segmenting the lab). Training was successful even in the presence of large class
imbalance of the data which was accomplished by using weighted categorical cross entropy as the
loss function with weights calculated using the median frequency method [18].

A custom mount was built from scratch and 3D printed to mount the Intel RealSense camera on
the Magic Leap One. Once a suitable mount was designed and printed, the Intel RealSense’s RGB-D
frames had to be calibrated with the Magic Leap One in order to overlay semantic information in
front of the user’s field of view. This calibration utilized a custom-built application to map the Intel
RealSense’s coordinate system to the Magic Leap’s. The discrepancy in field of view between the
Intel RealSense’s sensors and the user had to be accounted for as well.
The edge server was built using python and received requests from the Magic Leap One for

semantic information. Once a request was received, the server captured an RGB-D frame from the
Intel RealSense, ran inference using the semantic segmentation model, and projected the result
onto the 3D space to produce a semantic point cloud. The semantic point cloud was then sent
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back to the Magic Leap One. Even though the round trip time of the Magic Leap One making a
request to receiving a response did not enable a high frame rate real-time experience, it is likely
that optimizing the network and model inference (e.g. running inference on the GPU instead of the
CPU) will significantly improve the system’s ability to execute in real-time. Furthermore, using the
Magic Leap One’s optimized mesh renderer with a custom shader to render vertex points instead
of surfaces ensured that the semantic point cloud could be rendered without noticeable lag in the
user’s field of view to overlay semantic information.
Overall, this work achieved the goal of building a pipeline to bring semantic understanding

to AR. The system provides a physical AR device (i.e. Magic Leap One) which a user can wear
comfortably that has access to a semantic point cloud with the aid of an external sensor (i.e. Intel
RealSense) and edge server. Such a system can be used to investigate applications in AR which
require semantic understanding. Two such applications will be explored in the following sections.

3 ADAPTIVE AUGMENTED REALITY VISUAL OUTPUT SECURITY USING
REINFORCEMENT LEARNING

3.1 Overview
While the increasing proliferation of AR devices will undoubtedly enable many new applications,
issues of privacy and security cannot be ignored. This section will present an application of
semantic understanding for AR: visual output security. In particular, an understanding of the
user’s environment is needed to decide what real-world objects are import in order to provide
visual output security. For example, if a stop sign is detected the AR device may apply the visual
output security policy to not obscure the stop sign. The policy presented here is trained using
reinforcement learning (RL).
Much of the previous work on AR privacy has focused on the inputs to AR devices (i.e. input

security) [29, 55]. Noting this gap in AR security research, Lebeck et al. suggested in a position
paper that there should also be a focus on output security to secure the output of AR devices [37].
In particular, visual AR output security is concerned with two issues pertaining to the user’s

visual field:
• Regulating visual content displayed to the user to reduce distraction and obstruction of the
real-world context.

• Preventing holograms from obscuring other holograms with a higher priority.
For example, in the case of displaying holograms in car windshields, it would be dangerous for a

hologram to obstruct a stop sign. Similarly, a hologram which displays the speedometer should
not be obstructed by a hologram which displays the album art of the song the driver is currently
playing. In the case of ensuring important real-world context is not obstructed by a hologram, the
AR device must have a semantic understanding of the world to know what regions of the user’s field
of view should be obstruction free. Consequently, visual output security is an application which
greatly benefits from, and to a large degree requires, semantic information of a user’s environment.
Although previous work has exemplified the importance of visual output security and demon-

strated its feasibility in simulation [2, 38], they have not deployed visual output security policies on
a physical AR device to ascertain its viability in the real world. In particular, whether a RL based
output security model can be deployed without degrading performance was left an open question
[2]. To fill this gap, this work investigates whether RL models can be deployed on a physical AR
device without a noticeable degradation in performance and tests the deployment of a visual output
security policy trained using RL.

It is important to note that while this work focuses on visual output security, there are concerns
that other AR output, such as audio and haptic output, may need to be regulated as well [2, 38]. In
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addition, one may also want to limit distracting and uncomfortable AR output such as blinking
holograms, much like web browsers have evolved to block popups and the blink tag [38]. Further,
the issue of visual output security can be seen as something which generally improves the user’s
experience in addition to providing security. For example, a user may want their AR device to
automatically detect faces and not obstruct them.

This work using reinforcement learning for visual output security and deploying a system on a
physical AR device was published as an abstract and accompanying demo at ACM SenSys ’19 [17].

3.2 Related Work
3.2.1 Augmented Reality Output Security. Previous work has argued that while one could leave
output security concerns to the application developer, it is much safer to have the OS guarantee
the security of AR device outputs and investigated what an OS level AR device output security
module may look like [37, 38]. They allowed developers to write policies which were enforced by
Arya, a simulated proof of concept for an OS-level visual output security module.

However, as noted by Ahn et al., these hand-coded policies, while promising, can be difficult
to define for real-world use [2]. For example, specifying a policy to move holograms that are
obstructing an important real-world object while not moving holograms too far from their original
location and at the same time not obscuring other important holograms is not trivial. Ahn et
al. proposed the use of RL to solve this problem by automatically generating policies, and they
demonstrated their approach’s effectiveness in simulation [2]. More recently, Ahn et al. expanded
the policy generation for visual output security by using imitation learning [1].

3.2.2 Deep Reinforcement Learning. Reinforcement learning is a trial-and-error model training
technique based on behaviorist psychology [69]. Deep reinforcement learning is a method for
reinforcement learning which uses neural networks to train agent policies, and it faces three main
challenges [5]:

• The only signal the agent receives during training is the reward.
• An agent’s observation can contain strong temporal correlations.
• Agents have to be able to overcome long-range time dependencies.

Deep reinforcement learning has been successfully used to solve complex problems such as
playing classic Atari 2600 games [45], 3D bipedal and quadrupedal locomotion [59], and playing Go
[64]. While various deep reinforcement learning algorithms have been proposed [5], the proximal
policy optimization algorithm (PPO) has been found to be easier to implement, more general, and
have better sample complexity [60].

3.3 Reinforcement Learning Trained Visual Output Security Policy
An initial experiment was conducted using the Magic Leap One to ascertain whether a RL model can
be deployed on a physical AR device without degrading the user experience. Since responsiveness is
essential to a good AR experience, computation which may decrease the frame rate of the AR device,
such as running a RL model, may be detrimental to the user experience. For the experiment, a
simple game was developed using Unity [75] which an agent was trained to play using RL. Training
was conducted using Unity’s ml-agents framework [74].

Although there were some challenges with ml-agent and Magic Leap One SDK configurations to
deploy the RL policy on the Magic Leap One, once deployed the RL agent successfully played the
game without any noticeable performance degradation, laying the foundation to train and deploy a
RL trained visual output security policy on a physical device.
The output security problem for this project was defined as having one important real-world

object and one or more holograms. The position of the important real-world object and holograms
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were randomly assigned and the important real-world object was always placed behind holograms,
although the holograms did not necessarily obscure the important real-world object. The width
and height of the holograms were also randomly assigned in some cases.

Fig. 12. Example of visual output before (left) and after (right) a RL generated visual output security policy is
applied (from Ahn et al. [2]).

Given these conditions, the goal is to train an agent to move the holograms so that they do not
obscure the important real-world object while keeping the holograms as close to their original
positions as possible. Note that not obscuring other holograms was not taken into account. Figure
12 is an example of a simulated visual output security environment before and after RL-generated
policies are applied.

State Space. A model where the agent has complete knowledge of the states was used. Two state
spaces were defined:

• 𝑆1 in which each 𝑠 ∈ 𝑆1 consists of the location (𝑥 and 𝑦 coordinate), width, and height of the
holograms as well as the important real-world object. That is, 𝑆1 has 4(𝑁 + 1) observations
at each time step where 𝑁 is the number of holograms.

• 𝑆2 in which each 𝑠 ∈ 𝑆2 consists of the location (𝑥 and 𝑦 coordinate) of the important real-
world object and the location (𝑥 and𝑦 coordinate), 𝑥-velocity, and𝑦-velocity of the holograms.
That is, 𝑆2 has 4𝑁 + 2 observations at each time step where 𝑁 is the number of holograms.

Action Space. The RL agent was tasked with moving hologram(s) away from important real-world
objects. Two action spaces were used:

• 𝐴1 where the agent outputs the 𝑥 and 𝑦 coordinate for each hologram. That is, 𝐴1 has 2𝑁
actions at each time step where 𝑁 is the number of holograms.

• 𝐴2 where the agent outputs the 𝑥 and 𝑦 force for each hologram. That is, 𝐴1 has 2𝑁 actions
at each time step where 𝑁 is the number of holograms.

Reward Function. Initially, the following reward function (adapted from Ahn et al. [2]) with
various values of 𝛼 and 𝛽 , where 𝑟 is the position of the important real-world object, 𝑂 is the set of
original hologram positions, and 𝑂 ′ is the set of new hologram positions was used:

𝑅1 = 𝛼
∑
𝑜′∈𝑂′

𝐷𝑖𝑠𝑡𝑥,𝑦 (𝑜 ′, 𝑟 ) − 𝛽
∑

𝑜∈𝑂,𝑜′∈𝑂′
𝐷𝑖𝑠𝑡𝑥,𝑦 (𝑜, 𝑜 ′).

This reward function is meant to move holograms away from the important real-world object
while keeping holograms as close to their original position as possible. Although the suggested
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values of 𝛼 = 2.0 and 𝛽 = 1.5 [2] were tried, the reinforcement learning model did not converge in
some cases, most likely because of hyperparameter issues.

The following four states were defined to make a simpler reward function which worked well:
• Success: The hologram does not obscure the important real-world object and has not moved
outside of the user’s field of view.

• Failed: The hologram has moved outside of the user’s field of view.
• Incomplete: The hologram obscures the important real-world object and has not moved
outside of the user’s field of view.

• Done: The training session ended without reaching a Success or Failed state.
Two reward functions were defined using these three states.

Reward Function 𝑅2:

𝑅2 =


1, State = Success
0, State = Failed
continue session, State = Incomplete
0, State = Done

𝑅2 rewards the agent for moving a hologram away from a real-world object while ensuring it is
visible to the user. In the case that there is more than one hologram, the reward was accumulated
for each hologram and divided by the number of holograms to normalize the reward.

Reward Function 𝑅3:

𝑅3 =


𝑀−𝑆
𝑀

, State = Success
0, State = Failed
continue session, State = Incomplete
0, State = Done

where𝑀 is the max steps and 𝑆 is the current step. 𝑅3 rewards the agent for moving a hologram
away from a real-world object while ensuring it is visible to the user in a timely manner by giving
less reward the more steps it takes. In the case that there is more than one hologram, the reward
was accumulated for each hologram and divided by the number of holograms to normalize the
reward. Furthermore, in this instance, the Success state requires that the hologram is in the same
relative location to the important real-world object it was originally in. For example, if the hologram
was originally at the top left of the important real-world object, it would have to move away from
the important real-world object while remaining in the top left region relative to the important
real-world object.

3.4 Visual Output Security Policy Training
Figure 13 provides an overview of the visual output security model training and deployment process.
The model is trained using reinforcement learning in a simulated environment and deployed to the
physical device (Magic Leap One) once training converges.
In the simulated environment, a green cube, which had a consistent scale, represented the

important real-world object (see figure 14). It was placed randomly within the user’s field of view
at the beginning of each training cycle. Spherical holograms represented the objects which needed
to be moved away from the important real-world object.

Two types of RL output security policies were trained. The first policy calculated where to place
the holograms while the second calculated the direction in which to move the holograms.
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Fig. 13. General overview of the model training and deployment process (from Ahn et al. [2])

Fig. 14. Example of visual output before and after model-generated direction policy is applied to three
holograms during simulated training. The green cube represents the important real-world object.

Position Policy. The policy to calculate the position to move the holograms was trained using
reward function 𝑅1, with various values for 𝛼 and 𝛽 , along with state space 𝑆1 and action space 𝐴1.
The hyperparameters in table 7 were used along with the PPO algorithm.

Direction Policy. The policy to calculate the direction to move the holograms was trained using
reward function 𝑅2 with state space 𝑆2 and action space 𝐴2. The hyperparameters in table 8 were
used along with the PPO algorithm.

3.5 Visual Output Security Policy Training Results
Position Policy. As illustrated in figure 15 left, training a RL model for the position policy with

one hologram converged when not penalizing the agent for moving the hologram away from its
original location (i.e. setting 𝛽 to 0 in 𝑅1). However, the agent simply learned to move the hologram
to the top right of the user’s field of view in this case.
To overcome this problem, a RL agent for the position policy was also trained by penalizing

the agent for moving the hologram away from its original location (i.e. setting 𝛽 to some positive
number in 𝑅1). Although various values of 𝛼 and 𝛽 were tried, the model did not converge. An
example of training with a penalty is shown in figure 15 right.

Direction Policy. As illustrated in figure 16, training a RL model for the direction policy with one
hologram and three holograms both converged. However, the reward for the three hologram case
was substantially lower. In addition, the holograms tended to simply move in a general direction (i.e.
right) which led to the holograms moving away from their original locations more than necessary
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Parameter Value
Number of Layers 3
Hidden Units 128
Batch Size 64

Beta 5.0 × 10−3
Buffer Size 2048
Epsilon 0.2
Gamma 0.99
Lambda 0.95

Learning Rate 3.0 × 10−4
Number of Epochs 5
Time Horizon 2048
Normalize False

Use Recurrent False
Use Curiosity False

Table 7. Hyperparameters used to train a RL agent to move holograms to a specific position away from an
important real-world object.

Parameter Value
Number of Layers 2
Hidden Units 64
Batch Size 10

Beta 1.0 × 10−2
Buffer Size 512
Epsilon 0.2
Gamma 0.99
Lambda 0.95

Learning Rate 1.0 × 10−3
Number of Epochs 5
Time Horizon 64
Normalize False

Use Recurrent False
Use Curiosity False

Max steps per training cycle 100 to 500

Table 8. Hyperparameters used to train a RL agent to move holograms away from an important real-world
object.

for them to no longer obscure the important real-world object. To overcome this issue the 𝑅3 reward
function was used for the final policy as discussed in the next section.

3.6 Deploying the Visual Output Security Policy
A full visual output security application was developed to test the deployment of a RL trained visual
output security policy. The direction policy was chosen for this application since it performed
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Fig. 15. Left: Training using the position policy with one hologram and no penalty for moving the hologram
away from its original position. Right: Training using the position policy with one hologram and a penalty
for moving the hologram away from its original position.

Fig. 16. Left: Training using the direction policy with one hologram. Right: Training using the direction
policy with three holograms.

better than the position policy during initial testing. However, instead of training a model to move
𝑁 number of holograms away from an important real-world object, one model was trained using
the 𝑅3 reward function, 𝑆2 state space and 𝐴2 action space for a single hologram, enabling this
single model to be used for an arbitrary number of holograms by controlling each hologram with its
own agent. The modified 𝑅3 reward function was used to incentivize the agent to move holograms
away quickly by providing more reward the sooner the important real-world object was no longer
obstructed and to keep the hologram in the same relative position to the important real-world
object after moving the hologram by restricting the definition of the Success state.

For the purposes of this application, the important real-world object and hologram had a constant
size and random location.

Training. The RL agent was trained using the hyperparameters in table 9. In addition, the
distance from the important real-world object needed for the hologram to be considered no longer
obstructing it was incrementally increased to help the model converge. Figure 17 shows the training
of the direction policy RL agent.

Image Tracking. The image tracking library built into the Magic Leap One was used to recognize
and track an important real-world object (an image of a stop sign). The user interface for the visual
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Parameter Value
Number of Layers 2
Hidden Units 128
Batch Size 10

Beta 5.0 × 10−3
Buffer Size 100
Epsilon 0.2
Gamma 0.99
Lambda 0.95

Learning Rate 3.0 × 10−4
Number of Epochs 3
Time Horizon 64
Normalize False

Use Recurrent False
Use Curiosity False

Max steps per training cycle 100 to 500

Table 9. Hyperparameters used to train a RL agent to move holograms away from an important real-world
object for the final deployment.

Fig. 17. Training using the direction policy with one hologram while incrementally increasing the distance of
the hologram from the important real-world object in order to be in the Success state. Note that the varying
line colors is a result of pausing then resuming training.

output security demonstration overlaid a green square on top of the important real-world object
once it was recognized and tracked. Being able to apply the visual output security policy to more
object classes requires the kind of semantic understanding which was investigated in section 2.

Heuristics. Some heuristics were used in addition to the RL trained direction visual output security
policy:

• Only apply the RL trained direction policy if the hologram’s original position obstructs the
important real-world object.
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• Once the RL trained direction policy is applied, move the hologram back to its original
position as soon as its original position no longer obstructs the important real-world object.

Fig. 18. Left: Example of what is displayed on the Magic Leap One display before the model-generated
direction policy is applied to three holograms. Right: Example of what is displayed on the Magic Leap One
display after the model-generated direction policy is applied to three holograms. The green square is overlaid
in front of the important real-world object (a stop sign), indicating its position. In both cases, the user’s field
of view is actually larger but is clipped by the Magic Leap One screenshot functionality. In addition, the
Magic Leap One screenshot also results in a slight misalignment of holograms.

Deployment. The visual output security application was deployed on a Magic Leap One without
any noticeable performance degradation. Figure 18 shows an example of the user’s field of view
before the RL trained direction policy is applied (left) and after the policy is applied (right). A stop
sign was used as the example important real-world object in this demonstration. As these images
demonstrate, the application successfully identified an important real-world object and moved
obstructing holograms. The identification and movement happen in real time.

3.7 Discussion
As the training of the position and direction policy using the 𝑅1 and 𝑅2 reward functions indicate,
the reward function chosen has a direct effect on agent behavior. In the case of the position policy
using 𝑅1 with no penalty for moving the hologram away from its initial location, the model simply
learned to always move the object to the top right corner which defeats the purpose of moving the
obstructing hologram while keeping it as visible to the user as possible. Similarly, in the case of the
direction policy using 𝑅2 the agent learned to move the holograms in a general direction (i.e. right)
which also moved the holograms away from its initial location. Furthermore, model convergence
was an issue when training the position policy with the 𝑅1 reward function with a penalty, which
could potentially be overcome with more hyperparameter tuning.
While the convergence problem of the position policy may have been solved with more hy-

perparameter tuning, the approach of modifying the 𝑅2 reward function to take into account the
hologram’s initial relative location to the important real-world object was used to arrive at a more
scalable solution by using the 𝑅3 reward function with one hologram. With this framework of
training the RL agent for the visual output security problem, the final policy can be used by an
arbitrary number of holograms, cutting back on the need to train a separate model for varying
numbers of holograms. In addition, model convergence was aided by slowly increasing the distance
the hologram has to move from the important real-world object to no longer obstruct it.
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Although the built-in image tracking for the Magic Leap One was limited (the user had to be
relatively close to the image and not too off center), the visual output security application functioned
without any noticeable performance degradation for three holograms, indicating that a RL trained
agent is a viable solution for visual output security.

4 SEMANTICALLY AWARE MESHING
4.1 Overview of Semantically Aware Meshing
Mesh generation is critical to AR because it provides information about surfaces in the user’s
environment. Using this surface information, AR applications can interact with the environment
by, for example, placing an object on a table or “painting” a wall a different color by overlaying a
colored surface on a wall. In particular, high quality meshes lead to a significant improvement in
user experience. This section proposes a method to improve the mesh quality for AR applications
using semantic cues gained from the work presented in section 2. Specifically, the proposal is to
tune the priors used by mesh generation algorithms based on the semantic class of the points which
are being meshed.

Take for example the task of rolling a virtual ball on a table. If the mesh of the table is imperfect,
the ball may bounce around and change direction instead of smoothly rolling on the table as
expected. Unfortunately, while the meshes generated by current AR devices are indeed impressive,
they are still not of the highest quality. Sometimes meshes are incomplete and objects fall through
surfaces. In other cases meshes are not smooth and lead to inaccurate physics.

Fig. 19. Examples of meshes generated from the Magic Leap One. There is some jaggedness of the mesh
for the table even though it is smooth, although it may be difficult to perceive in the screenshot due to the
lack of depth cues. Note that the meshes are slightly misaligned due to limitations in the Magic Leap One’s
screenshot functionality.

Figure 19 shows an example of a mesh generated by the Magic Leap One. The Magic Leap One
has very good localization which allows one to view the mesh from different angles with minimal
drift. However, as illustrated by figure 19 the meshes generated by the Magic Leap One can be
jagged even for smooth surfaces. In addition, mesh quality degrades if there are minor perturbations,
such as a pencil on a table. Mesh quality does improve the longer one points the Magic Leap One
sensor at an object and also by moving around an object. Nonetheless, an ideal user experience
would be to provide high quality meshes without needing to diligently map an environment.

One way to improve the mesh quality for AR applications may be to incorporate semantic
information into the meshing process. Using the kind of semantic understanding of the environment
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gained from section 2, we could provide semantic cues to meshing algorithms to improve their
quality. For example, if we know a set of point cloud points belong to a table, the mesh generation
algorithm can be tuned to ensure smoothness of the meshed surface. Further, using semantic cues
may also allow the algorithm to focus on meshing important details. For example, an AR application
may require a high quality mesh of a table because objects are placed on it but not a chair because
the application does not interact with chairs. In this way, computational resources can be delegated
to improving the mesh for objects which make the most impact on a user’s experience.

4.2 Related Work
Mesh generation is itself a well studied field. Here, mesh generation from point cloud data will be
considered with a focus on previous work in mesh generation which has potential to be aided by
semantic cues.
In general, mesh generation algorithms have a set of priors. Such priors are used by mesh

generation algorithms to tackle imperfections in the point cloud data by taking into account
properties of the point cloud such as noise, misalignment, and density as well as assumptions about
the object being meshed such as smoothness and shape primitives [7].

A meshing algorithm may require information about surface normals. Normals are the direction
perpendicular to the local surface approximation for each point. Such normals can be obtained
using various methods [10, 25, 49]. Once these normals are obtained, they are useful for surface
reconstruction algorithms [9, 32]. For example, once one has an oriented normal for each point,
the zero crossings of the normals can be inferred to be the surfaces [7].
There are two types of mesh generation priors which may have the potential to be tuned by

semantic cues. The first is smoothness which constrains the reconstructed surface to a desired level
of smoothness [7]. In particular, local smoothness is used to combat issues of insufficient or missing
samples [3, 7, 25], whereas global smoothness is used in the reconstruction of objects to produce
watertight surfaces [7, 9, 32]. Another useful kind of prior is geometric primitives which assumes
that the geometry of the object being meshed can be described by simple geometric shapes such as
planes, spheres, cylinders, and cubes and are considered useful for meshing indoor scenes [7].
Another interesting prior used in mesh generation is data driven approaches. Data driven

approaches use a catalog of 3D models and match objects in the scene to the most appropriate
model [7]. While this method is useful for scene reconstruction [34, 47, 61] it does not provide a
true mesh of the scene since the objects selected for an object class (e.g. chair) may not be the exact
same chair as the one which is being meshed.
Some recent work has applied deep learning to mesh generation. Li et al. propose Supervised

Primitive Fitting Network [39] which is a model that can detect a number of geometric primitives to
generate a mesh and utilizes a PointNet++ [52] backbone. Kanazawa et al. have presented a model
which can predict the 3D texture and shape of an object from a single RGB image [31], which is
radically different from how meshes are currently generated using RGB-D data.

4.3 Semantically Aware Meshing: A Proposal
The proposal to use semantic cues for aiding mesh generation is centered on three ideas:

• Use semantic information to adjust the smoothness prior of mesh generation algorithms.
• Choose geometric primitives for regions of a point cloud based on semantic cues during
mesh generation.

• Reduce the focus of generating high quality meshes on regions which are not essential to the
user experience or for regions which cannot be meshed accurately.
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While current meshing algorithms in use for AR devices can generate high quality meshes given
enough time and data points, the idea of semantically aware meshing is to provide the same quality,
or better, meshes faster and without as much data. For example, take the case of meshing the surface
of a table. Given a set of points in the point cloud which are labeled as table surface, we could apply
a plane as a geometric primitive to mesh the region. The result would be a smooth surface which
interacts with AR objects in a manner that the user expects. For other objects, such as a chair, which
may be harder to describe using just geometric primitives we can tune smoothness parameters for
each object to generate high quality meshes. Further, some objects such as a tree simply cannot be
meshed well with current meshing algorithms. This is because it is difficult to distinguish each leaf
and branch given a point cloud. For such objects the semantically aware meshing algorithm can
“give up" and not exert unnecessary compute on trying to refine the mesh.

Although deep learning methods may provide higher quality meshes as algorithms improve and
more data sets are made available, it is likely that such models would not be real-time, especially
given the constraints of an AR deployment. Therefore, it is advantageous to use the semantic
information which various AR applications could also benefit from and use it as a prior for classical
meshing algorithms which can produce high quality meshes.

5 FUTUREWORK
Semantic Understanding. While the semantic understanding pipeline described in section 2

presents a framework on which to build AR experiences that exploit user context, there is still
much to be done to improve the quality and detail of the semantic model as well as its real-time
performance. The ultimate goal would be to fuse one or more semantic models together with SLAM
algorithms to build a semantic map of the world that contains both static and dynamic content.
Such a detailed semantic map would allow for truly immersive and persistent AR experiences as
virtual objects would retain their physical location across interactions.

Visual Output Security. Further research must be done on how to decide what constitutes an
important real-world object. Such criteria may change depending on the user’s context (e.g. driving
versus reading). In addition, more robust models for visual output security could be developed using
techniques such as curriculum learning and training agents to cooperate with each other, and add
parameters such that holograms do not obstruct each other while staying as close to their original
position as possible. Moreover, future AR output security work may also consider non-visual output
such as audio and haptic output.

Semantically Aware Meshing. A meshing pipeline which utilizes semantic cues to aid in the fine
tuning of priors should be developed and benchmarked against other methods. Such a method
will hopefully improve mesh quality while maintaining real-time performance on AR devices. In
addition, deep learning models which can be executed on raw point clouds may be a promising
method of improving mesh quality, although they may not have real-time guarantees. Mesh quality
will need to be balanced with sensor quality and algorithm latency for AR deployments.

6 CONCLUSION
Semantic understanding has the potential to greatly improve AR experiences. The work done in
this project presents a proof-of-concept of an end-to-end system which provides semantic context
for an AR application using a 2D semantic segmentation model and data from a RGB-D camera.
Moreover, this system provides the foundation on which AR applications that exploit semantic
cues can be built. Unless mobile compute improves and model complexity is reduced such that
real-time inference of semantic models is possible directly on AR devices, a real-world deployment
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of AR applications which need a rich understanding of the environment will most likely require
edge servers, much like what was used in this study.
Visual output security was presented and investigated as one application which can benefit

greatly from semantic context. The work developed a proof of concept AR visual output security
application using a RL trained policy, demonstrating that RL trained models are a viable method
for developing policies for output security. The demonstration also showed that RL models can be
executed on a physical AR device, opening the doors for applying RL to more problems in AR.

Finally, semantically aware meshing was proposed as a method to improve the quality of meshes
for AR applications. Because meshes are vital to the user experience in AR, improving their quality
is of interest to enable high quality AR applications.

As AR improves and the line between the physical and virtual worlds blur, AR devices will need
to be smarter to enable the user to seamlessly interact with both virtual and physical objects. An
understanding of the user’s environment is vital to enable such rich experiences and there is still
much work to be done to bring about the kind of fidelity and quality of understanding necessary for
a truly immersive experience. Nonetheless, the foundation of a semantic understanding pipeline for
a physical AR device and the exploration of visual output security and semantically aware meshing
provides a framework on which to build more seamless AR.
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