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I. INTRODUCTION

Augmented Reality (AR) and Mixed Reality (MR) are
becoming increasingly ubiquitous. Research has shown that
AR/MR will be a $100 industry by 2020 [7] and companies are
chasing this market by making their own solution to AR/MR.

Some solutions, such as Apple’s ARKit [18] and Google’s
ARCore [19], use smartphones to create an AR/MR experience
through the smartphone camera and display. However, these
experiences are not fully immersive since users must hold up
their smartphone in front of them. Microsoft’s HoloLense [17]
and Magic Leap’s Magic Leap One [16] Head Mounted Dis-
play (HMD) AR/MR devices enable a much more immersive
AR/MR experience since users do not have to hold a device
in front of them and objects (i.e. “holograms”) are project
right in front of them to augment their field of view. Although
these devices are limited in their current field of view, their
immersiveness is promising for the future of AR/MR.

Although current immersive AR/MR technologies are fo-
cused on the use of proprietary devices, HoloKit [20] enables
immersive AR/MR experiences with the use of a smartphone
and simple cardboard mounting device (similar to Google
Cardboard [21] which is for Virtual Reality experiences). In
addition, researchers have suggested that AR car windshields
may be a good use case for AR/MR technologies [23] through
applications such as left-turn driving aids [24].

While the increasing proliferation of AR/MR devices will
undoubtedly enable many new applications, issues of privacy
and security cannot be ignored. Much of the previous work on
AR/MR privacy has focused on the inputs to AR/MR devices
(i.e. input security) [14,15]. Noting this gap in AR/MR security
research, Lebek et al. suggested in a position paper that there
should also be a focus on output security to secure the output
of AR/MR devices [4].

Visual AR/MR output security is concerned with two issues
pertaining to the user’s visual field:
• Regulating visual content displayed to the user to reduce

distraction and obstruction of the real-world context.
• Preventing holograms from obscuring other holograms

with a higher priority.
To understand why these two issues are a concern for AR/MR
security, take the case of an AR windshield in a car. Suppose
the AR display in the car had a hologram to display the
current speed and a hologram with the name of the song which
is currently playing. It would be dangerous if either of the

holograms obstructed an important real-world object such as
a stop sign (the first security concern). In addition, it would
also be dangerous if the name of the song hologram obstructed
the current speed hologram (the second security concern).

While one could leave these output security concerns to
the application developer, it is much safer to have the OS
guarantee the security of AR/MR device outputs. In this vein,
previous work has investigated what an OS level AR/MR
device output security module may look like by allowing
developers to write policies [3]. However, as noted by Surin et
al., these hand-coded policies are cumbersome and impractical
for real-world use [1]. For example, specifying a policy to
move holograms that are obstructing an important real-world
object while not moving too far from its original location and
not obscuring other important holograms at the same time is
a very difficult task. Surin et al. proposed the use of rein-
forcement learning (RL) to solve this problem to automatically
generate policies and demonstrated its effectiveness [1].

Although previous work has demonstrated the importance of
output security and demonstrated its feasibility in simulation
[1,3], they have not deployed output security policies on a
physical AR/MR device to ascertain its viability in the real-
world. In particular, whether a RL based output security model
can be deployed without degrading performance was left an
open question [1]. To fill this gap, this work investigates
whether RL models can be deployed on a physical AR/MR
device without a noticeable degradation in performance and
test the deployment of an output security policy trained using
RL.

It is important to note that while this work focuses on visual
output security, there are concerns that other AR/MR output,
such as audio and haptic output, may need to be regulated as
well [1,3]. In addition, one may also want to limit distracting
and uncomfortable AR/MR output such as blinking holograms
much like web browsers have evolved to block popups and the
blink tag [3].

II. RL ON A PHYSICAL DEVICE

The Magic Leap One [16] was used to ascertain whether
a RL model can be deployed on a physical device without
degrading the user experience. Since responsiveness is essen-
tial to a good AR/MR experience, computation which may
decrease the frame rate of the AR/MR device, such as running
a RL model, may be detrimental to the user experience.



Fig. 1: A simple game which a RL agent was trained to play.

Fig. 2: Training of the agent to play the simple game.

A simple game was developed using Unity [6] which a RL
agent was trained to play. The objective of the game is to move
the sphere to the target (cube) without falling off the platform
(see figure 1). A RL agent was trained using the ml-agents
framework [5] to play the game.

Reward Function The following reward function was used
to train the agent:
• +1 reward if the sphere came in contact with the target.
• 0 reward if the sphere fell off the platform.

Although a reward function where the agent was punished for
falling off the platform (−1 reward) was tested, this made the
agent more ”timid” which made it less likely to explore its
environment and learn the optimal policy to find the target.

Training Training converged quickly (around 10 minutes)
on a 2017 15in MacBook Pro with a Radeon Pro 560 graphics
card (see figure 2). The hyperparameters used to train the agent
are summarized in table I. The PPO algorithm [8] was used
to train the agent.

Deployment Although there were some challenges with ml-
agent and Magic Leap One SDK configurations to deploy the
RL model on the Magic Leap One to play the simple game,
once deployed the RL agent successfully played the game
without any noticeable performance degradation.

This experiment, training a RL agent to play a simple game

Parameter Value
Num Layers 2
Hidden Units 128

Batch Size 10
Beta 5.0× 10−3

Buffer Size 100
Epsilon 0.2
Gamma 0.99
Lambda 0.95

Learning Rate 3.0× 10−4

Num Epochs 3
Time Horizon 64

Normalize False
Use Recurrent False
Use Curiosity False

TABLE I: Hyperparameters used to train a RL agent to play
the simple game.

Fig. 3: Example of visual outputs before and after RL-
generated policies are applied (from Surin et al. [1]).

and deploying it on the Magic Leap One, illustrated that a
RL model could be deployed on a physical device without a
noticeable performance impact, laying the foundation to train
and deploy a RL output security model on a physical device.

III. RL OUTPUT SECURITY MODEL

The output security problem for this project was defined
as having one important real-world object and one or more
holograms. The position of the important real-world object
and holograms were randomly assigned and the important real-
world object was always placed behind holograms, although
the holograms did not necessarily obscure the important real-
world object. The width and height of the holograms were also
randomly assigned in some cases.

Given these conditions, the goal is to train an agent to move
the holograms so that they do not obscure the important real-
world object while keeping the holograms as to their original
positions as possible. Note that not obscuring other holograms
was not taken into account. Fig 3 is an example of a simulated
visual output for before and after RL-generated policies are
applied [1].

State Space A model where the agent has complete knowl-
edge of the states was used in this project. Two state spaces
were used:
• S1 in which each s ∈ S1 consisted of the location (x

and y coordinate), width, and height of the holograms as
well as the important real-world object. That is, S1 has
4(N + 1) observations at each time step where N is the
number of holograms.
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• S2 in which each s ∈ S2 consisted of the location (x and
y coordinate) of the important real-world object and the
location (x, y coordinate), x-velocity, and y-velocity of
the holograms. That is, S2 has 4N + 2 observations at
each time step where N is the number of holograms.

Action Space The RL agent was tasked with moving
hologram(s) away from real-world objects. Two action spaces
were used:

• A1 where the agent outputs the x and y coordinate for
each hologram. That is, A1 has 2 actions at each time
step where N is the number of holograms.

• A2 where the agent outputs the x and y force for each
hologram. That is, A1 has 2 actions at each time step
where N is the number of holograms.

Reward Function Initially, the following reward function
(adapted from Surin et al. [1]) with various values of α and
β, where r is the position of the important real-world object,
O is the set of original hologram positions, and O′ is the set
of new hologram positions was chosen, was used:

R1 = α
∑
o′∈O′

(Distx,y(o
′, r))− β

∑
o∈O

(Distx,y(o, r)).

This reward function is meant to move holograms away from
the important real-world object while keeping holograms as
close to their original position as possible. Although the
suggested values of α = 2.0 and β = 1.5 [1] were tried, the
reinforcement learning model did not converge in some cases,
most likely because of hyperparameter issues. The following
four states were defined to make a simpler reward function
which worked well:

• Success: The hologram does not obscure the important
real-world object and has not moved outside of the user’s
field of view.

• Failed: The hologram has moved outside of the user’s
field of view.

• Incomplete: The hologram obscures the important real-
world object and has not moved outside of the user’s
field of view.

• Done: The training session ended without reaching a
Success or Failed state.

Two reward functions were defined using these three states.
Reward Function R2

R2 =


1, State = Success
0, State = Failed
continue session, State = Incomplete
0, State = Done

R2 rewards the agent for moving a hologram away from a
real-world object while ensuring its visible to the user. In the
case that there is more than one hologram, the reward was
accumulated for each hologram and divided by the number of
holograms to normalize the reward.

Fig. 4: General overview of the model training and deployment
process (from Surin et al. [1]).

Reward Function R3

R3 =


M−S
M , State = Success

0, State = Failed
continue session, State = Incomplete
0, State = Done

where M is the max steps and S is the current step. R3 rewards
the agent for moving a hologram away from a real-world
object while ensuring its visible to the user in a timely manner
by giving less reward the more steps it takes. In the case that
there is more then one hologram, the reward was accumulated
for each hologram and divided by the number of holograms
to normalize the reward. Furthermore, the Success state, in
this case requires, that the hologram is in the same relative
location to the important real-world object it was originally
in. For example, if the hologram was originally at the top left
of the important real-world object, it would have to move away
from the important real-world object while remaining in the
top left region of the important real-world object.

IV. RL OUTPUT SECURITY MODEL EVALUATION

Fig 4 provides an overview of the output security model
training and deployment process [1]. The model is trained
using reinforcement learning in a simulated environment and
deployed to the physical device (Magic Leap One) once the
training converges.

In the simulated environment, a green cube, which had a
consistent scale, represented the important real-world object.
It was placed randomly within the user’s field of view at
the beginning of each training cycle. Spherical holograms
represented the objects which needed to be moved away from
the important real-world object.

Two types of RL output security models were trained. The
first policy calculated where to place the holograms while
the second calculated the direction in which to move the
holograms.

Position Policy The policy to calculate the position to move
the holograms was trained using reward function R1, with
various values for α and β, along with state space S1 and
action space A1. The hyperparameters in table II were used
along with the PPO algorithm.

Direction Policy The policy to calculate the direction to
move the holograms was trained using reward function R2
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Parameter Value
Num Layers 3
Hidden Units 128

Batch Size 64
Beta 5.0× 10−3

Buffer Size 2048
Epsilon 0.2
Gamma 0.99
Lambda 0.95

Learning Rate 3.0× 10−4

Num Epochs 5
Time Horizon 2048

Normalize False
Use Recurrent False
Use Curiosity False

TABLE II: Hyperparameters used to train a RL agent to move
holograms to a specific position away from an important real-
world object.

Parameter Value
Num Layers 2
Hidden Units 64

Batch Size 10
Beta 1.0× 10−2

Buffer Size 512
Epsilon 0.2
Gamma 0.99
Lambda 0.95

Learning Rate 1.0× 10−3

Num Epochs 5
Time Horizon 64

Normalize False
Use Recurrent False
Use Curiosity False

Max steps per training cycle 100 to 500

TABLE III: Hyperparameters used to train a RL agent to move
holograms away from an important real-world object.

Fig. 5: Training for the position policy with one hologram with
no penalty for moving the hologram away from its original
position.

with state space S2 and action space A2. The hyperparameters
in table III were used along with the PPO algorithm.

Fig. 6: Training for the position policy with one hologram
with a penalty for moving the hologram away from its original
position.

Fig. 7: Training for the direction policy with one hologram.

V. RESULTS

Position Policy As illustrated in figure 5, training a RL
model for the position policy with one hologram converged
when not penalizing the agent for moving the hologram away
from its original location (i.e. setting β to 0 in R1). However,
the agent simply learned to move the hologram to the top right
of the user’s field of view in this case.

To overcome this problem, a RL agent for the position
policy was also trained by penalizing the agent for moving
the hologram away from its original location (i.e. setting β to
some positive number in R1). Although various values of α
and β were tried, the model did not converge. An example
training for is shown in figure 6.

Direction Policy As illustrated in figure 7 and figure 8,
training a RL model for the direction policy with one hologram
and three holograms both converged. However, the reward for
the three hologram case was substantially lower. Figure 9 is
an example of the direction policy being applied by an RL
agent to three holograms. In addition, the holograms tended
to simply move in a general direction (i.e. right) which led to
the holograms moving away from its original location more
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Fig. 8: Training for the direction policy with three holograms.

Fig. 9: Example of visual output before and after model
generated direction policy is applied to three holograms. The
green cube represents an important real-world object.

than they had to for them to no longer obscure the important
real-world object.

VI. RL OUTPUT SECURITY APPLICATION

A full output security application was developed to test the
deployment of a RL trained output security policy. The direc-
tion policy was chosen for this application since it performed
better than the position policy during initial testing. However,

Parameter Value
Num Layers 2
Hidden Units 128

Batch Size 10
Beta 5.0× 10−3

Buffer Size 100
Epsilon 0.2
Gamma 0.99
Lambda 0.95

Learning Rate 3.0× 10−4

Num Epochs 3
Time Horizon 64

Normalize False
Use Recurrent False
Use Curiosity False

Max steps per training cycle 100 to 500

TABLE IV: Hyperparameters used to train a RL agent to move
holograms away from an important real-world object.

Fig. 10: Training for the direction policy with one hologram
while incrementally increasing the distance the hologram
should be from the important real-world object to be in the
Success state. Note that the varying line colors is a result of
pausing then resuming training.

instead of training a model to move n number of holograms
away from an important real-world object, one model was
trained using the R3 reward function, S2 state space and A2

action space for a single hologram, enabling this single model
to be used for an arbitrary number of holograms.

For the purposes of this application, the important real-
world object and hologram had a constant size and random
location.

Training The RL agent was trained using the hyperparam-
eters in table IV. In addition, the distance from the real-world
object needed for the hologram to be considered no longer
obstructing it was incrementally increased to help the model
converge. Figure 10 shows the training of the direction policy
RL agent.

Image Tracking The image tracking library built into the
Magic Leap One was used to recognize and track an important
real-world object. The image in figure 11 was printed on a
letter size piece of paper and used as the important real-world
object. Although a simpler image was originally used, the
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Fig. 11: The target which was used as the important real-world
object for the output security application (from the Magic Leap
documentation [16]).

Fig. 12: Example of what is displayed on the Magic Leap One
display before model generated direction policy is applied to
three holograms. Note that the user’s field of view is actually
larger but is clipped by the Magic Leap One screenshot
functionality.

Magic Leap One library performed better using this more
complex image. The user interface for this output security
demonstration overlaid a green square on top of the important
real-world object once it was recognized and tracked. Note
that in an actual deployment the important real-world object
would be objects in the user’s field of view which should not
be blocked such as stop signs and pedestrians.

Heuristics Some heuristics were used in addition to the RL
trained direction output security policy:
• Only apply the RL trained direction policy if the holo-

gram’s original position obstructs the important real-
world object.

• Once the RL trained direction policy is applied, move
the hologram back to its original position as soon as its
original position no longer obstructs the important real-
world object.

Fig. 13: Example of what is displayed on the Magic Leap
One display after model generated direction policy is applied
to three holograms. The green square is overlaid in front of
the important real-world object, indicating its position. Note
that the user’s field of view is actually larger but is clipped by
the Magic Leap One screenshot functionality.

Deployment The output security application was deployed
on a Magic Leap One and without any noticeable performance
degradation. Figure 12 shows an example of the user’s field
of view before the RL trained direction policy is applied and
figure 13 shows an example of after the policy is applied. As
these images demonstrate, the application successfully iden-
tified an important real-world object and moved obstructing
holograms in real time.

VII. DISCUSSION

As the training of the position and direction policy using
the R1 and R2 reward function indicate, the reward function
chosen has a direct effect on agent behavior. In the case of
the position policy using R1 with no penalty for moving the
hologram away from its initial location, the model simply
learned to always move the object to the top right corner which
defeats the purpose of moving the obstructing hologram while
keeping it as visible to the user as possible. Similarly, in the
case of the direction policy using R2 the agent learned to
move the holograms in a general direction (i.e. right) which
again moved the holograms away from its initial location.
Furthermore, model convergence was an issue when training
the position policy with the R1 reward function with a penalty,
most likely due to a lack of hyperparameter tuning.

While the convergence problem of the position policy
may have been solved with more hyperparameter tuning, the
approach was modifying the R2 reward function to take in
the hologram’s initial relative location to the important real-
world object was used to come to a more scalable solution
by using the R3 reward function with one hologram. With
this training model, used to train the RL agent for the output
security application deployment, a RL agent is trained which
can be used by an arbitrary number of holograms, cutting back
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on the need to train a separate model for various numbers
of holograms. In addition, slowly increasing the distance the
hologram has to move from the important real-world object to
no longer obstruct it aided in model convergence.

Although the built-in image tracking for the Magic Leap
One was limited (the user had to be relatively close to the
image and not too off center), the output security application
performance without any performance degradation for three
holograms, indicating that an RL trained agent is a viable
solution for visual output security.

VIII. RELATED WORK

A. AR/MR Output Security

Previously, Lebeck et al. proposed the need to focus on
AR/MR output security in addition to input security [4] and
developed Arya, a simulated proof of concept for an OS-level
visual output security module [3]. Surin et al. expanded the
policy generation for visual output security using reinforce-
ment learning [1] and more recently using imitation learning
[2]. This work expands on the work of using RL to train a
visual output security policy to develop a proof of concept
output security application on the Magic Leap One.

B. Deep Reinforcement Learning

Reinforcement learning is a trial-and-error model training
technique based on behaviorist psychology [10]. Deep re-
inforcement learning (DRL) is a method for reinforcement
learning which uses neural networks to train agent policies
and faces three main challenges[9]:
• The only signal the agent receives during training is the

reward.
• An agent’s observation can contain strong temporal cor-

relations.
• Agents have to be able to overcome long-range time

dependencies.
Deep reinforcement learning has been successfully used to
solve complex problems such as playing classic Atari 2600
games [12], 3D bipedal and quadrupedal locomotion [11], and
playing Go [13]. While various deep reinforcement learning
algorithms have been proposed [9], the proximal policy opti-
mization algorithm (PPO), which was used to train the agents
in this project, has been found to be easier to implement, more
general, and have better sample complexity [8].

IX. FUTURE WORK

Some future directions for AR/MR output security include:
• Investigation into what constitutes an important real-

world object. This is something which may depend on
the context in which the AR/MR device is being used
(e.g. driving or walking).

• Better image recognition and tracking for visual AR/MR
output security.

• Develop more robust models for visual output security
using techniques such as curriculum learning and training
agents to cooperate with each other, especially to add
parameters so that holograms do not obstruct each other

as well as stay as close to their original position as
possible.

• Develop a proof of concept for an OS level output
security framework similar ro Arya [3] which uses a RL
trained agent.

In addition, future work should focus on non-visual output
security concerns as well such as audio and haptic output.

Furthermore, as this project has shown because running
RL models does not noticeably degrade Magic Leap One
performance, additional applications which may benefit from
RL or other machine learning models should be investigated.
In doing so, the limits of running trained models should
be investigated and computation offloaded to edge or cloud
servers if necessary.

X. CONCLUSION

As AR/MR devices becoming prevalent there is a need to
secure both the input and output of AR/MR devices. While
the sensor input applications have access to present security
and privacy concerns, the output of AR/MR applications also
poses a security threat. For example, visual output could be
distracting and obstruct important real-world objects and audio
output could disorient users.

This work developed a proof of concept AR/MR visual
output security application using a RL trained output se-
curity policy so show that RL trained models are a viable
method for developing policies for output security. Although
various training parameters where used, a direction based
policy trained for individual holograms appears to be the most
scalable and easiest to train RL agent for visual output security
applications. RL trained models were successfully deployed
on a physical AR/MR device (Magic Leap One) without any
noticeable performance degradation, showing that machine
learning models can be used not only for output security
applications but for other real-time AR/MR applications as
well.
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